Upper Midwest Edition

farmers' independent research of seed technologies

Evaluating Corn Hybrids and Soybean Varieties

How to Interpret FIRST Trials

larmers' Independent Research of Seed Technologies (FIRST) is an independent corn and soybean yield testing service. We compare product yield performance in grower fields across 16 states: Delaware, Illinois, Indiana, Iowa, Kansas, Maryland, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota, Virginia and Wisconsin. In 2014, we compared yields of 1,129 corn grain and 760 soybean products. In total, more than 83,800 plot strips in 550 tests spread across 333 farms were established.

Test locations are selected to represent the geographic diversity within a region. Ideal sites have uniform, well-drained soils with farmer hosts using production practices typical for the area.

Sponsoring seed companies submit their best products to desired test regions. They provide high-quality seed from commercial lots and fees to enter FIRST seed. tests. Exceptions are check products (denoted by CK), chosen by FIRST managers to bridge results between early- and full-season tests, and Grower Comparison products (denoted by GC), provided by our host farmers for their knowledge.

FIRST managers package, randomize, and plant seeds into host grower fields using slightly modified commercial planting equipment. Plot strips are 45' long and 10' wide (four 30" corn rows and soybean rows of either seven 15" rows or four 30" rows). Typically the center two corn rows and all soybean rows are used to measure yield.

Regions have been established to provide similarity by geography and crop maturity. Corn and soybean products within a 10-day and 0.7-group minimum maturity range, respectively, are pooled into a single all-season test or split into early- and full-season tests depending upon entry volume. All seed products entered in a region are seeded at each of six corn and four soybean locations within the region. Products are replicated three times per test and grouped in blocks from front to back and side to side. This provides more precision in yield measurement and flexibility should a disruptive event require elimination of non-uniform plot areas.

Soybean cyst nematode (SCN) levels are reported for most soybean test sites. Egg counts are taken per 100 ml of soil. Sites with up to 2,000 eggs, 2,000 to 12,000 eggs or more than 12,000 eggs are classified as low, medium or high populations, respectively.

FIRST regional summaries are designed to identify consistently high yielding products from multiple locations. Product performance is averaged across all locations within a region. Regional summary tables rank the Top 30 corn and Top 20 soybean products on yield within a region. Grain yield, grain moisture and lodging are averaged from all locations and presented along with individual site yield results.

Regional summaries include least significant difference (LSD) for the region and individual site results. Statistically, the LSD value is the difference needed between two

Footnotes and Abbreviations:

Yields in **bold** are significantly above test average.

Brands in italics exceed the test's grain moisture limit.

Brand names ending with GC are grower chosen comparison products.

Brand names ending with CK are check products in both early- and full-season tests.

- # identifies rejected results omitted from summary
- ‡ identifies locations with 2 replications
- § identifies United Soybean Board sponsored entries
- ^ G2® brand seed is distributed by NuTech Seed, LLC. HPT® brand seed is distributed by Hoegemeyer Hybrids, Inc. RPM® brand seed is distributed by Doebler's PA Hybrids, Inc. Supreme EX® brand seed is distributed by Seed Consultants, Inc. VPMaxx® brand seed is distributed by AgVenture, Inc. XL® and Phoenix® brand seed is distributed by Beck's Superior Hybrids. Curry®, G2®, HPT®, RPM®, Supreme EX®, VPMaxx® and XL® are registered trademarks of DuPont Pioneer.

n/a - not available ns – not significant

SCN Resistance: S – susceptible, MR Moderately Resistant,

R – Resistant.

products to accurately state that one product is better than another 9 times out of 10 (90% probability).

FIRST manager comments are provided for each test site. Comments provide insight regarding test conditions such as weather patterns, plant health and any other factors that may have impacted product results.

For more details, additional results and other editions visit www.firstseedtests.com.

AgSCI Copyright ©2014 Agronomic Seed Consulting, Inc. All rights reserved.

Contents

Upper Midwest Edition

Covering Minnesota and the Dakotas

Other editions available at www.firstseedtests.com/media.shtml

2 Make Sense of the Data How to Interpret FIRST trials

RRSO Red River Valley South

CORN RESULTS

MNWC Minnesota West Central

SDNE South Dakota Northeast

MNSW

SDSE South Dakota Southeast

Minnesota Southwest

MNSE Minnesota Southeast

SOYBEAN RESULTS

22 **RRCE** Red River Valley Central

SDSE South Dakota Southeast

RRSO Red River Valley South **MNCE** Minnesota Central

SDNE South Dakota Northeast

MNSC Minnesota South Central

28 **SDEC MNSO** South Dakota East Central Minnesota South

Technologies*

3000GT	Agrisure® 3000GT (CB,RW,LL,GT)
3011A	Agrisure® Artesian® (CB,RW,LL,GT)
3110	Agrisure® Viptera® 3110 (Vip, CB,LL,GT)
3111	Agrisure® Viptera® 3111 (Vip,CB,RW,LL,GT)
3122	Agrisure® 3122 (CB,HXX,RW,LL,GT)
3220	Agrisure® Viptera® 3220 (Vip,CB,HX,LL,GT)
5122	Agrisure® Duracade® 5122 (CB,HX,RW,RW2,LL,GT)
5222	Agrisure® Duracade® 5122 (Vip,CB,HX,RW,RW2,LL,GT)
A	Agrisure® Artesian®
AM	Optimum® AcreMax® (YGCB,HX,LL,RR2)
AM1	Optimum® AcreMax®1 (HXT,LL,RR2)
AM-R	Optimum® AcreMax® (YGCB,HX,RR2)
AMRW	Optimum® AcreMax® Rooåtworm (HXRW,LL,RR2)
Λ	Ontimum® AcreMay® Rootworm (HXRM/RR2)

Optimum® AcreMax® Rootworm (HXRW,RR2 AMX Optimum® AcreMax® Xtra (YGCB,HXT,LL,RR2) AMX-R Optimum® AcreMax® Xtra (YGCB,HXT,RR2) **AMXT** Optimum® AcreMax® Xtreme (YGCB, HXT, LL, RR2)

ΑQ Optimum® AQUAmax® Blended seed (i.e. refuge blend)

CB/LL Agrisure® CB/LL CB/LL/RW Agrisure® CB/LL/RW Genuity® DroughtGard® Agrisure® GT GT/CB/LL Agrisure® GT/CB/LL Herculex® 1, contains LL Herculex® 1, Roundup Ready 2 Corn HX,RR2

HXRW Herculex® Rootworm, contains LL Herculex® Xtra (HX,HXRW,LL) HXT,RR2 Herculex® Xtra, Roundup Ready 2 Corn

LibertyLink®

None Conventional, non-GMO

Optimum® Intrasect® (YGCB,HX,LL,RR2) OIX Optimum® Intrasect® Xtra (YGCB,HXT,LL,RR2) Optimum® Intrasect® Xtreme (YGCB,HXT,RW,LL,RR2) OIXT Optimum® Leptra® (Vip,YGCB,HX,LL,RR2)
Optimum® TRIsect® (HX,RW,LL,RR2) OL

OT Roundup Ready® Soybeans Roundup Ready® 2 Corn RR RR2 RR2Y Genuity® Roundup Ready 2 Yield® Sulfonylurea herbicide tolerant STX

SmartStax® (VT3P,HXX)
Genuity® VT Double PRO® VT2P YieldGard VT Triple® Genuity® VT Triple PRO® VT3 VT3P **YGCB** YieldGard® Corn Borer

* Refuge component genetics may vary in a refuge blend seed product.

Seed Treatments**

Information not provided Allegiance®

AC Acceleron® fungicide products

ACi Acceleron® fungicide and insecticide products

ΑM ApronMaxx® ΑP Apron XL® Αt Actellic®

Avicta® Complete Beans AVB Avicta® Complete Corn **AVC**

C2, C5, C1 Cruiser® at 0.25, 0.5 and 1.25 mg ai/seed, respectively

CCBClariva Complete Beans Cruiser Extreme® CE CM CruiserMaxx® Corn CMB CruiserMaxx® Beans

CMBV CruiserMaxx® Beans with Vibrance

Dynasty® DST Dominance ST Evergol™ Energy EE **Escalate®** Fs Gaucho® G Inovate™ System Lorsban® Maxim XL® Μ Μ Maxim® MΩ Maxim Ouattro®

None untreated P2, P5, P1 Poncho® at 0.25, 0.5 and 1.25 mg ai/seed, respectively

ProShield™ (Mid-Atlantic Seed)

PV Poncho®/Votivo® R Raxil® SS+ Soyshield Plus™ St Stamina®

Trilex®

** Seed treatments may include unspecified plant health promoting components.

Season Overview Statistics

Corn Yield	Corn Yield								Soybean Yield								
	2014 vs	s. 2013		(b	u. per ac	re)		2014 vs. 2013			(bu. per acre)						
	% change	bu. (+/-)	2014	2013	2012	2011	2010	% change	bu. (+/-)	2014	2013	2012	2011	2010			
Minimum	10.1	5.1	50.3	45.2	6.4	6.1	30.1	74.5	7.6	10.2	2.6	6.6	23.7	4.4			
Average	0.4	0.7	202.9	202.2	163.5	178.8	191.9	5.4	3.1	57.7	54.6	50.4	57.0	59.6			
Maximum	-9.9	-29.9	303.2	333.1	286.8	277	299.6	-6.9	-6.4	92.7	99.1	94.3	92.1	91.2			

Data from all FIRST plots tested during that year. Any rejected data was eliminated from these figures.

Corn					
FIRST	Avera	ge Yield	by Year	(bu. pe	r acre)
Region	2014	2013	2012	2011	2010
DMNO	235	209	191	129	169
IAEC	225	185	166	196	199
IANC	190	197	148	189	191
IANO	181	184	139	176	181
IANW	184	194	183	187	188
IAWC	221	188	170	168	188
ILEC	221	201	146	172	192
ILNO	217	230	143	196	206
ILN0ue	215	226	121	180	197
ILS0	206	182	108	139	168
ILWC	233	206	159	201	190
INCE	224	252	140	214	232
INNO	211	214	155	207	220
INS0	209	215	137	192	162
KSNE	194	168			
MISO	201	217	124	178	186
MNSE	201	191	210	199	218
MNSW	182	195	193	181	203
MNWC	172	201	204	183	213
MONE	207	185	159	166	
MONW	225	164	104	157	
NCTS	198	229	181	206	212
NENE	208	217	120	190	198
NESE	205	184	126	156	187
OHNW	190	196	146	185	155
OHWC	205	191	158	170	182
PACE	212	206	201	149	195
PASE	224	231	181	121	185
RRS0	166	173	222	146	159
SDNE	184	205	185	184	135
SDSE	202	200	137	166	171
VACP	200				
WICE	176	203	166		
WIS0	195	205	150	196	215
Corn Average	203	202	164	179	191

FIRST	Avera	ge Yield	by Year	(bu. pe	r acre
Region	2014	2013	2012	2011	201
DMNO	72	74		51	37
IANC	52	41	52	57	63
IANO	50	47	49	62	61
IANW	56	58	54		
IASC	52	58	62	64	55
IAS0	69	62	59	67	72
ILNC	57	56	52	61	62
ILN0	71	71	70	70	66
ILSC	58	53	46	45	57
ILS0	52	60	51	50	50
INCE	64	72	64	77	74
INNO	77	68	54	73	70
KSEC	48	33			
KSNE	51	46	37		
MNCE	65	59	57	49	61
MNSC	51	60	50	46	61
MNS0	58	56	54	50	58
MONE	59	40	41		
MONW	71	36	42		
NCSL	72	60	59	75	66
NENE	57	61	34		
NESE	60	60	35		
OHNW	71	43	57	55	41
OHWC	55				
PASE	65	74		51	37
RRCE	40	43	44		
RRS0	37	33	42		
SDEC	56	60	48	49	57
SDNE	55	48	52	40	45
SDSE	58	53	27	43	49
WIS0	65	60	58	66	72
Soy Average	58	55	50	57	59

Includes all a	aldelieve	raculte	avcant	raiactad	data

Corn Technolog	jies Teste	d		
	(% of e	entries c	ontainin	g traits)
	2014	2013	2012	2011
Traits Tested				
Conventional	1.8	1.3	1.1	0.9
Glyphosate	98.1	98.5	98.8	98.8
LibertyLink	73.6	61.9	40.9	42.6
Corn Borer	97.0	97.8	96.9	96.5
CRW	76.4	82.1	84.4	86.2
Triple Stack*	75.9	82.0	84.3	86.0
Drought tolerant	6.1	_	_	_
*Triple stack = C	B + RW +	herbicide	tolerant	trait
Refuge Blends	Tested			
Blend	65.7	51.6	10.1	0.9
Non-Blend	34.3	48.4	89.9	99.1
Key Corn Insect	Technolo	gies ent	ered	
STX	51.6	38.5	13.5	14.2
VT3P	11.6	29.4	45.1	30.8
VT2P	11.3	4.5	2.5	2.6
AM	4.8	2.1	_	_
3000GT	4.2	6.0	9.4	10.7
3111	2.5	1.5	1.7	2.7
AMX	2.4	2.1	1.5	_
OI,RR	2.1	3.3	2.4	0.0
HX,RR2	1.5	3.9	5.6	5.7
AMXT	1.1	<1	_	_
— items not ava	ailable or	not tested	t	
Soybean Techn	ologies T	ested		
		(% of e	entries)	
	2014	2013	2012	2011
Treated	90.6	91.6	88.3	96.5
Untreated	9.4	8.4	11.7	3.5
Traits Tested				
RR2Y	88.1	83.4	88.5	89.8
RR2/STS	4.5	2.4	2.8	0.1

^{*} specific traits not tracked

7.3

14.1

8.5

9.8

RR

Includes all available results except rejected data.

Yield Range: 143.5-181.6 Yield Average: 166.5 Top \$ Per Acre: \$529.00

Corn Field Notes: Red River Valley South

Mark Tollefson, FIRST Manager

Casselton—We got planted late as saturated soils and cool temperatures dominated the spring. This site had good emergence, and uniform plant heights were observed in June. We had plenty of moisture early and dry weather in July. During harvest time we had healthy stalks with many leaves on plants along with above-average-sized corn ears. We lost one replication in the early-season test because of an electronic system glitch.

Colfax—Planting dates in the area were later than ideal because of saturated soils, but the site drained well. This site saw plenty of rain early with June rainfall totaling 6.76". That is 3.1" above the 30-year average. This was a nice-looking site this fall with a fairly uniform stand. Corn across both tests had plant heights around 7' tall. The stalks were tough and sturdy at harvest so the lodging scores were very low.

Elbow Lake—We planted this site later than normal, and the moderate temperatures this

season made growing degree days lag behind normal during the growing period. I was happy to see the corn had dried down well for harvest; most of the corn stalks were standing well and had a lot of leaves on them. The stalk lodging that I saw was slight and seemed to follow specific hybrids. We had good yields for this site that averaged 178 bu. per acre in the early-season test and 185.1 bu. per acre in the full-season test.

Foxhome—Planting was delayed here as farmers waited for the ground to dry out this spring. FIRST farmer member Mark Yaggie planted the surrounding field one day before this site was planted. At harvest, ear shanks were weak and all ears had tipped down. We had to lower the combine head snoots to the ground to keep ears on the stalk for harvest, avoiding premature ear drop and subsequent loss. Many of the corn plants here had snapped off above the ears.

Gwinner—We had some hail on this field in July, and the insurance

adjuster reported 25% damage to the field. Hail damage was reported to be worse on the north end of the field, which was a half mile from the test areas in the same field. June rainfall of 5.92" was recorded. The corn was a little uneven during stand counts, causing some yield to be lost. We had slightly above-average rainfall in July and August, which helped yields. The corn was dry and there were no harvesting issues.

Hawley—This area had a very wet spring, which delayed planting into June on some farms in the area. July rainfall was 1.5" below the 30-year average and likely reduced some yield potential. This was another test location that had short corn plant heights at harvest. They were only around 5' tall. Many plants still had leaves attached to them as well. Yield results were a bit variable here. Results from one replication in each test were removed because of reduced and widely fluctuating vields.

Site Informatio	n						2	014 Rair	nfall (inch	ies)	
Red River Valle	y South						Mon	thly		Vs. 30-year avg.	
Site	Soil Texture	Tillage	Prev. Grop	Units N	Planted	Мау	June	July	August	July	August
Casselton	silty clay loam	conventional	sugarbeet	180	5/22	3.47	6.02	1.79	2.61	-1.67	-0.01
Colfax	sandy loam	conventional	soybean	140	5/24	3.41	6.76	1.65	4.64	-1.83	1.68
Elbow Lake	clay loam	conventional	soybean	150	5/23	4.26	4.79	3.22	3.08	-0.46	0.05
Foxhome	loam	conventional	sugarbeet	163	5/24	3.31	6.58	1.45	2.64	-1.94	-0.53
Gwinner	loam	conventional	soybean	138	5/22	4.32	5.92	3.63	3.15	0.33	1.01
Hawley	loam Rainfall obtained o	conventional	soybean	130	5/23	4.42	4.79	1.45	2.27	-1.76	-0.40

FIRST Red River Valley South Corn Results

EARLY-SEASON	N TEST 85-90 Day C	RM											Top 30	of 54 te	ested
Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Casselton‡	Colfax	Elbow Lake	Foxhome	Gwinner	Hawley
Latham	LH4097VT2PR0RIB	VT2P,B	AC,P2	90	179.9	17.4	1	529	1	186.4	163.7	203.2	161.7	198.5	165.6
REA LG Seeds	3B330-RIB LG5408VT2PRIB	VT2P,B VT2P,B	AC,P5V AC,P5V	90	177.7 175.9	17.9 16.5	2 1	520 521	3 2	199.7 209.1	170.0 178.2	183.9 177.8	152.4 152.8	192.1 192.8	168.1 144.9
NuTech	5N-186	3000GT	MQ,P5V	86	174.2	17.2	4	513	4	192.4	147.4	187.5	148.5	186.8	182.7
Dyna-Gro NuTech	D29VC30 5B-290	VT2P GT/CB/LL	AC,P5V MQ,P5V	89 90	172.9 172.6	16.7 17.2	1 4	511 508	6 8	184.2 182.3	178.0 162.4	190.2 173.9	133.1 149.5	188.8 192.0	162.9 175.7
Wensman	W 8097VT2RIB	VT2P,B	AC,P5V	88	172.3	17.2	1	507	10	190.1	178.9	153.5	147.8	181.8	181.9
ProSeed Peterson	990-3000GT 75K85VT2PR0RIB	3000GT VT2P,B	CM,C2 AC,P2	90 85	172.2 171.3	16.5 16.5	2 1	510 507	<u>7</u> 11	188.1 167.5	172.8 162.9	175.5 190.3	152.4 149.9	186.2 176.3	158.3 181.0
Terning Seeds	TS8198VIP3110	3110	CM,C2	90	170.8	14.9	2	512	5	183.2	167.5	180.7	152.3	179.1	161.8
ProSeed REA	1385VT2PRIB 3A377-RIB	VT2P,B STX,B	AC,P2 AC,P5V	85 89	170.7 170.5	16.0 17.8	2 1	508 500	9 17	176.6 176.5	165.5 164.0	179.3 165.8	145.7 145.2	178.5 191.7	178.6 179.7
REA	3A901-RIB	STX,B	AC,P5V AC,P5V	90	170.3	17.9	2	499	18	201.5	165.0	192.6	140.0	165.3	157.1
Federal	3540VT2P	VT2P	AC,P2	85	170.0	17.0	1	502	14	198.6	145.0	181.3	136.5	186.4	172.4
Wensman Renk	W 80903VT2RIB RK299VT2P	VT2P,B VT2P	AC,P5V AC,P2	90 89	169.5 169.5	16.2 16.5	1 2	503 502	12 15	168.5 190.6	171.5 163.8	169.3 170.4	143.3 150.4	175.5 176.7	188.6 164.8
Channel	187-42VT2PRIB	VT2P,B	AC,P5V	87	169.4	16.8	1	501	16	163.4	167.9	185.6	158.0	173.9	167.7
Prairie Brand Renk	851RA RK302GTCBLLRWBL	STX,B 3111	CM,C2 CM,C2	<u>87</u> 88	169.4 169.3	17.6 16.1	14	497 503	21 13	189.2 166.0	147.5 165.0	195.7 180.0	133.5 156.7	167.7 181.1	183.0 166.9
Titan Pro	TP 32-86 RR2	RR2	AC,P2	86	169.0	16.9	1	499	19	193.5	153.8	190.2	152.6	168.4	155.4
Thunder Titan Pro	6987VT2PRIB TP 38-90 3220EZ	VT2P,B 3220,B	AC,P2 CM,C2	87 90	168.2 168.0	16.4 17.7	1 5	499 493	20 23	158.5 168.5	168.8 173.0	183.5 171.0	156.0 151.5	174.4 193.0	167.8 151.0
Wensman	W 80866VT2RIB	VT2P,B	AC,P5V	86	167.8	16.7	1	496	22	172.0	157.1	187.5	146.4	170.5	173.5
Nuseed	8701VT2PRIB	VT2P,B	AC,P2	87	166.4	17.2	11	490	25	179.6	142.7	186.3	137.0	181.5	171.3
Prairie Brand Renk	920GT3 RK266VT3P	3000GT VT3P,B	CM,C2 AC,P2	90 85	166.1 165.6	16.2 16.8	4 1	493 489	24 27	172.3 190.7	174.4 150.7	169.8 184.7	156.4 151.5	182.4 165.5	141.1 150.2
Thunder	4990RR	RR2	AC,P2	90	165.5	17.5	2	486	30	187.1	172.0	174.8	133.5	179.0	146.3
Thunder REA	6385VT2PRIB 3B890-RIB	VT2P,B VT2P,B	AC,P2 AC,P5V	85 89	165.3 165.0	16.5 17.3	2	490 486	26 31	190.8 180.9	159.0 147.8	176.9 186.8	141.5 140.3	172.3 179.0	151.3 155.0
King	3880GT	GT	CM,C2	88	163.2	15.2	2	489	28	164.7	157.0	173.1	159.9	185.1	139.6
Gold Country	92-48RSS CK	STX,B	AC,P5V	92	168.5	19.7	1	486	29	181.6	154.5	204.0	136.0	176.4	158.3
Test Average = LSD (0.10) =					165.2 10.4	16.9 0.9	2	488		176.0 19.3	158.6 21.4	178.0 18.4	143.0 15.6	176.7 16.9	159.0 20.1
	TEST 91-94 Day CR	RM											Top 30	of 54	
REA	3B922-RIB	VT2P,B	AC,P5V	92	181.6	18.7	1	528	1	209.4	175.9	190.3	140.9	213.5	159.4
Dyna-Gro Titan Pro	D32VC56 2M91-2P	VT2P	AC,P5V	92 91	179.6 178.0	21.0 18.0	2 1	512 521	2	184.5 189.5	188.4 171.2	191.3 199.6	150.2 135.7	167.7 189.1	195.5 182.8
REA	4B285-RIB	VT2P,B VT2P,B	AC,P2 AC,P5V	93	177.6	19.3	1	514	3	187.4	171.2	187.3	142.8	192.3	183.1
ProSeed	1393VT2PRIB	VT2P,B	AC,P2	93	176.2	20.3	1	505	8	186.8	172.4	191.8	139.9	214.6	151.4
REA Titan Pro	3A929-RIB TP 48-93 2P	STX,B VT2P,B	AC,P5V AC,P2	92	175.6 175.6	19.7 21.3	2 1	506 499	6 11	181.0 198.3	182.6 186.2	186.9 185.7	134.9 139.6	182.7 179.3	185.7 164.5
Federal	4130VT2PRIB	VT2P,B	AC,P2	91	175.3	18.6	1	510	5	179.9	180.8	185.7	150.4	188.3	166.7
LG Seeds	LG5415STX VS92-110	STX VT2P,B	AC,P5V	93 92	175.1 175.1	19.4 20.5	2	506 501	7 10	188.5 181.9	173.3 167.6	201.8 199.3	135.9 137.4	194.5 185.2	156.7 179.3
Viking Federal	4520VT2PRIB	VT2P,B VT2P,B	AC,P2 AC,P2	95	174.9	19.8	1	504	9	187.5	178.7	188.2	151.1	200.5	143.4
Nuseed	9504VT3PRIB	VT3P,B	AC,P2	95	173.6	20.2	1	498	13	185.3	175.7	179.0	143.1	182.4	175.8
Latham Federal	LH4242VT2PRORIB 4540VT2P	VT2P,B VT2P	AC,P5V CM,C2	92 95	173.5 173.3	21.6 20.5	1 2	492 496	20 18	163.7 199.8	191.4 180.1	188.0 203.9	142.8 137.3	186.7 178.4	168.5 140.0
Renk	RK522SSTX	STX,B	AC,P2	94	173.2	20.3	1	497	16	182.3	167.7	170.4	151.1	200.1	167.4
Viking	VS91-591 7993VT2PRIB	VT2P,B VT2P,B	AC,P2 AC,P2	91 93	171.2 170.9	18.4 20.5	1	499	12 24	176.8 183.5	172.8 171.6	194.6 187.4	146.0 142.1	199.2 183.5	137.6 157.1
Thunder ProSeed	1191VT2PRIB	VT2P,B	AC,P2	91	170.9	18.3	1	489 498	14	169.9	181.0	198.1	143.3	190.8	140.6
ProSeed	1292VT2PRIB	VT2P,B	AC,P2	92	170.5	18.2	1	498	15	179.3	150.8	188.0	141.3	191.1	172.4
Dairyland Nuseed	DS9791RA 9304VT2P	STX,B VT2P	CM,C2 AC,P2	91 93	170.1 170.0	21.0	2 1	485 483	25 26	165.5 180.7	174.0 173.2	171.5 173.5	136.2 139.7	188.5 187.8	184.8 165.1
Thunder	4391VT2PRIB	VT2P,B	AC,P2	91	169.9	18.3	2	496	19	188.4	177.6	189.8	147.1	193.4	123.2
Wensman Gold Country	W 90941STX 92-13R2P	STX VT2P,B	AC,P5V AC,P5V	94 92	169.6 169.1	19.2 18.9	2	491 491	21 22	167.4 184.6	194.2 168.8	194.3 177.6	132.1 140.2	164.0 196.5	165.8 146.6
Latham	LH4098VT3PRORIB	VT3P,B	AC,PSV AC,P2	90	169.1	17.4	2	497	17	197.1	168.5	190.2	144.4	176.3	137.6
Terning Seeds	TS8199VT2P	VT2P	CM,C2	91	168.7	21.5	1	479	29	181.5	188.1	184.7	140.4	186.3	131.1
NuTech/G2 Gen Latham	5X-894^ LH4455VT3PRORIB	HXT,RR2 VT3P,B	MQ,P5V AC,P2	94 94	168.4 167.9	18.4 21.2	1 2	491 478	23 30	182.6 172.8	172.6 172.8	182.3 187.6	148.9 157.9	187.9 184.1	136.3 132.4
Wensman	W 90935STXRIB	STX,B	AC,P5V	93	165.8	19.1	2	480	28	168.4	171.6	181.7	136.0	177.6	159.4
	VPmx RL4616HBW^	HX,RR2	MQ,P5	94	164.8	18.3	2	481	27	186.9	178.4	172.5	129.5	166.7	154.6
Gold Country Test Average =	92-48RSS CK	STX,B	AC,P5V	92	165.3 167.7	20.3 19.8	2 2	474 483	35	168.5 178.0	166.6 171.9	189.7 185.1	136.3 136.6	174.3 182.6	156.2 151.7
LSD (0.10) =			-02	l	10.9	0.9	2			14.7	17.1	17.7	14.9	25.3	25.4
Rold Aleigs are sig	gnificantly above test av	erage. $\ddagger = 2 \text{ re}$	epiications, ear	ıy-seas				v Libo			_	_			_

Yield Range: 165.8-198.9 Yield Average: 184.4 Top \$ Per Acre: \$595.00

Corn Field Notes: South Dakota Northeast

Mark Tollefson, FIRST Manager

Bath—This area missed the big rains in June that were common at other test locations. June and July were both below the 30-year average for total monthly rainfall. FIRST farmer member Scott Sperry was a little disappointed with yields, which he attributed to the lack of rain early in the growing season. However, we still managed to find good yields and test results this year. The average yield was 202.4 bu. per acre in the early-season test and 192 bu. per acre in the full-season test. We had tall plant heights of 8' and up. Stalks were thick and tough at harvest.

Cavour—Plant height was about 6' tall for most hybrids. For the first time this year we saw that a small number of stalks had greensnapped. This was earlier in the season, and only 1–5% of plants were impacted. This was also isolated to the early-season test. May, June and July had belowaverage monthly rainfall totals. In August, we recorded rain totals of 2.83", which is 0.4" above the 30-

year average. At harvest time, the leaves on much of the corn had blown off the stalks.

Clear Lake—Some hybrids were goosenecked from strong winds earlier in the season. Many area farmers had to wait for their crops to dry down because grain moistures were higher than desired. Corn cobs and kernels were smaller than average, based on other locations we harvested this fall. We ran the combine during a strong cross wind of around 25 mph. This caused some stalk lodging during harvest when corn stalks became exposed to the wind.

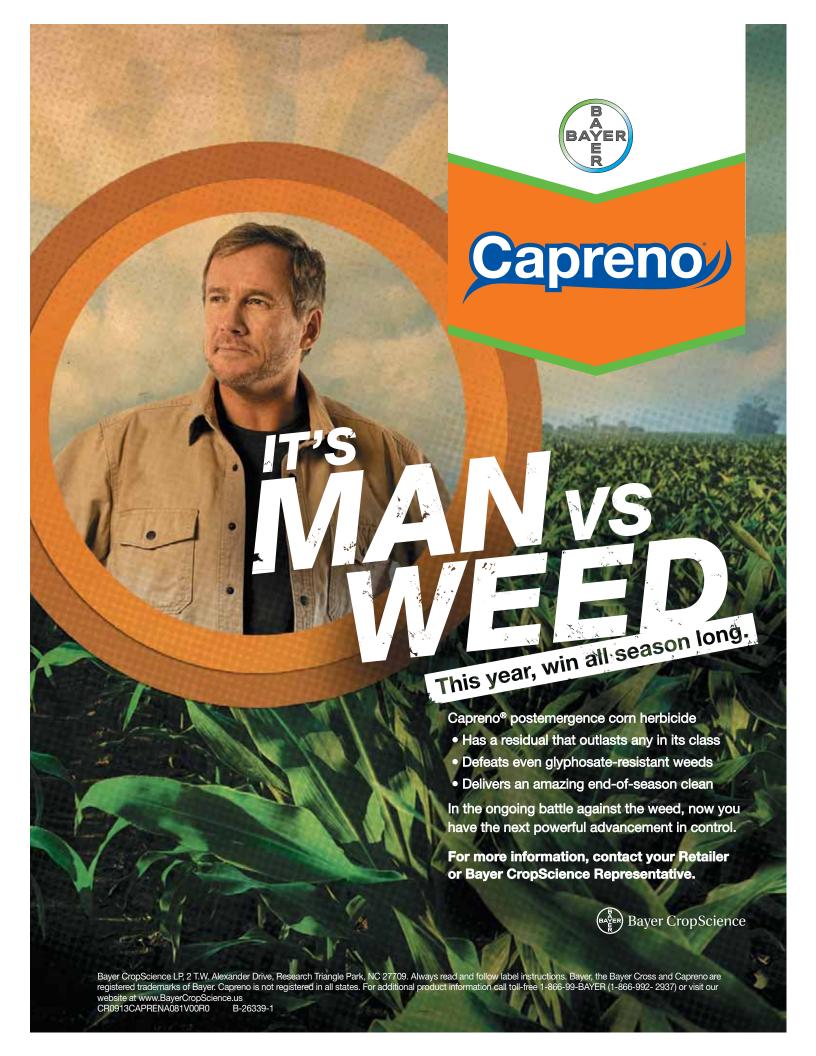
Howard—This area could have really benefited from some additional rain in July, when only 1.54" fell. This amount is 1.7" below the 30-year average. FIRST farmer member John Feller said he had about a six-week period with no meaningful rainfall. The cool summer helped keep stress down during this dry stretch and helped produce really nice test results and yields this year. The corn harvested

well with good grain moistures and straight, upright stalks.

Watertown—A Sept. 14 frost damaged corn leaves but didn't kill the stalks. Grain moistures were slow to come down this year despite having some dry weather in October. However, we found good yields and grain moistures in these trials. This was a nice even site at harvest; most tassels and tops of the stalks were standing tall at harvest time, and many hybrids stood over 8' tall.

Webster—This site had recorded rainfalls in May and June of 3.7" and 6.1", respectively, which totaled 2.9" over the 30-year average. Even with July's rainfall at 1.9" below average, May through August rainfall still ended up above average for the year. The field remained clean all year despite the short corn at harvest. All the corn stalks at this site had the top half of the stalk, everything above the ear, broken off by harvest. I was pleasantly surprised by the average yields for these tests.

Site Informatio	n					2014 Rainfall (inches)							
South Dakota I	Northeast			Mon	thly		Vs. 30-year avg.						
Site	Soil Texture	Tillage	Prev. Crop	Units N	Planted	Мау	June	July	August	July	August		
Bath	silt loam	no-till	soybean	177	5/18	4.96	3.36	0.98	7.87	-2.69	5.27		
Cavour	sandy loam	no-till	soybean	142	5/17	2.06	2.90	2.45	2.83	-0.47	0.40		
Clear Lake	silty clay loam	conventional	soybean	160	5/16	3.89	7.69	2.77	2.06	-0.69	-0.89		
Howard	loam	conventional	corn	170	5/7	3.87	4.93	1.54	3.39	-1.70	0.30		
Watertown	silty clay loam	conventional	soybean	140	5/15	3.15	6.30	2.62	2.74	-0.94	-0.14		
Webster	silty clay loam	no-till	alfalfa	148	5/20	3.73	6.07	1.85	3.05	-1.87	0.00		



FIRST South Dakota Northeast Corn Results

	N TEST 91-95 Day C	RM											Top 30	of 54 t	este
Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Bath	Cavour	Clear Lake	Howard	Watertown	
ederal liking	4240VT2P VS92-110	VT2P VT2P,B	AC,P2 AC,P2	92 92	198.9 198.6	15.3 15.1	2	595 595	1 2	212.9 206.3	189.2 187.6	196.9 189.6	206.1 199.3	214.2 214.4	17 19
lustang	4695GENVT3P GC	VT3P,B	AC,P2V	95	198.0	15.1	2	594	3	216.0	185.4	185.5	196.9	210.2	19
tine	R9313VT2Pro	VT2P,B	AC,P2	95	197.1	14.2	1	591	4	200.5	194.8	176.8	203.7	216.7	19
luseed roSeed	9304VT2P 1191VT2PRIB	VT2P VT2P,B	AC,P2 AC,P2	93 91	196.9 196.8	15.6 13.8	1 1	588 590	8 5	203.1 220.3	185.4 182.6	187.4 174.7	199.3 189.8	200.1 211.2	20 20
lensman	W 90941STX	STX	AC,P2	94	196.8	14.3	1	590	6	204.9	197.1	193.6	195.5	200.2	18
EA	4B941-RIB	VT2P,B	AC,P5V	94	196.3	15.1	1	588	9	220.0	188.6	185.2	196.9	215.0	17
iking	VS91-591	VT2P,B	AC,P2	91	196.2	13.9	1	589	7	212.7	186.2	196.2	188.1	217.1	17
itan Pro atham	2M95-2P LH4242VT2PR0RIB	VT2P,B VT2P,B	AC,P2 AC,P5V	95 92	196.2 196.2	15.4 15.4	1 1	587 587	10 11	208.6	193.6 193.4	184.6 190.4	206.9	200.7 183.7	18
ederal	4540VT3P	VT2F,B VT3P	AC,P3V	95	195.6	15.5	1	584	13	210.3	181.8	176.3	208.8	218.7	1
EA	4V953-RIB	VT3P,B	AC,P5V	95	195.1	14.0	1	585	12	210.3	195.3	174.5	198.5	201.4	1
hunder	7993VT2PRIB	VT2P,B	AC,P2	93	194.9	15.2	1	584	14	209.8	181.7	186.1	191.4	207.7	19
enk	RK568VT3P E52-95R	VT3P,B VT2P,B	AC,P2 AC,P2	95	193.9 193.9	15.2	1 2	581	15 16	224.8 200.2	184.8 188.0	162.6	200.2 195.2	198.2 216.5	19 18
king ederal	4440VT3PRIB	VT3P,B	AC,P2	95 94	193.9	15.4 15.2	2	580 580	17	213.8	178.9	176.4 174.3	198.5	211.7	1
lensman	W 80952VT2RIB	VT2P,B	AC,P5V	95	193.3	15.0	1	580	18	212.3	181.2	161.5	200.0	210.9	
tine	R9209VT2Pro	VT2P,B	AC,P2	92	192.5	15.2	1	577	19	189.9	180.3	196.8	196.8	202.8	1
atham tan Pro	LH4455VT3PRORIB TP 48-93 2P	VT3P,B VT2P,B	AC,P2 AC,P2	94	192.1 191.5	15.0 15.2	2 1	576 574	20 21	205.0	181.7 162.0	187.8 190.5	202.0 186.5	202.5	1
erning Seeds	TS8199VT2P	VT2P,D VT2P	CM,C2	93 91	191.2	15.4	1	574 572	23	219.4	169.5	185.7	190.2	202.3	1
		HX,RR2	MQ,P5	94	190.9	14.0	1	573	22	201.1	175.5	181.3	201.4	197.3	1
itham	LH4098VT3PRORIB	VT3P,B	AC,P2	90	190.3	13.5	1	571	24	232.3	170.1	167.7	179.9	190.1	2
ΞA 	4B285-RIB	VT2P,B	AC,P5V	93	189.7	14.2	1	569	25	201.7	183.4	170.0	186.3	204.9	1
ekalb EA	DKC43-48RIB GC 4A942-RIB	VT3P,B STX,B	AC,P2 AC,P5V	93 94	188.2 187.6	13.9 14.5	1 1	565 563	26 27	212.9 204.7	177.3 171.0	176.3 185.1	184.4 188.8	196.4 193.5	1 1
:A itham	LH4568VT3PRORIB	VT3P,B	AC,P3V AC,P2	94 95	187.6	15.0	1	563	28	204.7	160.4	173.2	190.8	211.6	1
tan Pro	2M91-2P	VT2P,B	AC,P2	91	187.3	13.8	1	562	29	210.8	158.5	177.6	182.6	207.6	1
enk	RK522SSTX	STX,B	AC,P2	94	186.8	14.9	2	560	30	188.7	182.6	179.5	181.3	201.2	1
oneer	P9834AMX CK	AMX,B	MQ,C2	98	182.2 187.2	14.5 14.7	2 1	547 561	37	195.8 202.4	164.3 176.3	163.6 174.5	189.2 188.9	208.3 201.2	_1 _1
est Average = SD (0.10) =								301		17.8					
					9.4	0.5	ns			17.0	20.5	14.5	16.5	17.4	
ULL-SEASON '	TEST 96-100 Day C	RM			9.4	0.5	ns			17.0	20.5	14.5		0 of 54	
	TEST 96-100 Day C P9917AMX GC	RM AMX,B	MQ,C2	99	192.9	15.6	ns 1	576	1	199.4	180.4	173.2			tes
oneer	P9917AMX GC D37SS60		MQ,C2 AC,P5V	99 97	192.9 192.5	15.6 15.6	1 1	576 575	2	199.4 198.3	180.4 181.5	173.2 165.1	Top 3 204.8 207.6	0 of 54 197.8 213.2	tes 2
oneer yna-Gro atham	P9917AMX GC D37SS60 LH4859SSRIB	AMX,B STX STX,B	AC,P5V AC,P5V	97 98	192.9 192.5 191.0	15.6 15.6 16.1	1 1 1	575 568	3	199.4 198.3 202.2	180.4 181.5 166.2	173.2 165.1 176.5	Top 3 6 204.8 207.6 209.8	197.8 213.2 201.8	tes 2 1
oneer yna-Gro atham tan Pro	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS	AMX,B STX STX,B STX,B	AC,P5V AC,P5V AC,P5V	97 98 100	192.9 192.5 191.0 190.9	15.6 15.6 16.1 16.2	1 1 1 1	575 568 567	2 3 4	199.4 198.3 202.2 196.7	180.4 181.5 166.2 168.7	173.2 165.1 176.5 181.9	Top 30 204.8 207.6 209.8 200.8	197.8 213.2 201.8 205.8	1 1 1
oneer yna-Gro atham tan Pro king	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578	AMX,B STX STX,B STX,B VT3P,B	AC,P5V AC,P5V AC,P5V AC,P2	97 98 100 96	192.9 192.5 191.0 190.9	15.6 15.6 16.1 16.2 15.3	1 1 1 1	575 568 567 567	2 3 4 5	199.4 198.3 202.2 196.7 196.4	180.4 181.5 166.2 168.7 177.3	173.2 165.1 176.5 181.9 169.7	Top 3 204.8 207.6 209.8 200.8 205.6	197.8 213.2 201.8 205.8 199.7	1 1 1 1
oneer yna-Gro utham tan Pro king EA	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS	AMX,B STX STX,B STX,B	AC,P5V AC,P5V AC,P5V	97 98 100	192.9 192.5 191.0 190.9	15.6 15.6 16.1 16.2	1 1 1 1	575 568 567	2 3 4	199.4 198.3 202.2 196.7	180.4 181.5 166.2 168.7	173.2 165.1 176.5 181.9	Top 30 204.8 207.6 209.8 200.8	197.8 213.2 201.8 205.8	1 1 1 1 1
oneer yna-Gro ttham tan Pro king EA ng	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC	AMX,B STX STX,B STX,B VT3P,B STX,B 3011A STX,B	AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V CM,C2 AC,P5V	97 98 100 96 99 98 97	192.9 192.5 191.0 190.9 189.5 189.4 188.3 188.3	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7	1 1 1 1 1 1 1 2	575 568 567 567 565 559 557	2 3 4 5 6 7 9	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4	197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2	tes 2 1 1 1 1 1 1 1
oneer yna-Gro ttham tan Pro king EA ng ekalb airie Brand	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3	AMX,B STX STX,B STX,B VT3P,B STX,B 3011A STX,B 3000GT	AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V CM,C2 AC,P5V CM,C2	97 98 100 96 99 98 97	192.9 192.5 191.0 190.9 189.5 189.4 188.3 188.3	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7	1 1 1 1 1 1 1 2 1	575 568 567 567 565 559 557 558	2 3 4 5 6 7 9	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3	Top 30 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8	197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2 204.4	1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roSeed	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT	AMX,B STX STX,B STX,B VT3P,B STX,B 3011A STX,B 3000GT 3000GT	AC,P5V AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V CM,C2 AC,P5V CM,C2 CM,C2 CM,C2	97 98 100 96 99 98 97 98 99	192.9 192.5 191.0 190.9 189.5 189.4 188.3 188.3 187.8 187.4	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2	1 1 1 1 1 1 2 1 1	575 568 567 567 565 559 557 558 557	2 3 4 5 6 7 9 8 10	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3	197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9	1 1 1 1 1 1 1 1
oneer /na-Gro ttham tan Pro king EA ng ekalb airie Brand oSeed /na-Gro	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14	AMX,B STX STX,B STX,B VT3P,B STX,B 3011A STX,B 3000GT	AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V CM,C2 AC,P5V CM,C2	97 98 100 96 99 98 97	192.9 192.5 191.0 190.9 189.5 189.4 188.3 188.3	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7	1 1 1 1 1 1 1 2 1	575 568 567 567 565 559 557 558	2 3 4 5 6 7 9	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3	Top 30 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8	197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2 204.4	tes 2 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb airie Brand oSeed yna-Gro gVenture/Scherr	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX	AMX,B STX STX,B STX,B STX,B VT3P,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 CM,C2 AC,P5V MQ,P5 AC,P2	97 98 100 96 99 98 97 98 99	192.9 192.5 191.0 190.9 189.5 189.4 188.3 188.3 187.8 187.4 186.9	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2	1 1 1 1 1 1 2 1 1 2	575 568 567 567 565 559 557 558 557 553	2 3 4 5 6 7 9 8 10	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5	197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8	tes 2 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb airie Brand oSeed yna-Gro gVenture/Scherr enk aunder	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB	AMX,B STX STX,B STX,B STX,B VT3P,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 CM,C2 AC,P5V MQ,P5 AC,P5V MQ,P5	97 98 100 96 99 98 97 98 99 99 99	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2 16.6 16.6 15.9 14.4	1 1 1 1 1 1 2 1 1 2 1 2 1 3	575 568 567 567 565 559 557 558 557 553 553 553	2 3 4 5 6 7 9 8 10 13 14 15 11	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.6 191.0	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 165.9	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5	0 of 54 197.8 213.2 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7	tes 2 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roSeed yna-Gro gVenture/Scherr enk under	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V	97 98 100 96 99 98 97 98 99 99 99 98 96	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.6 185.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2 16.6 15.9 14.4	1 1 1 1 1 1 2 1 1 2 1 3 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557	2 3 4 5 6 7 9 8 10 13 14 15 11	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.6 191.0	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 165.9	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roSeed yna-Gro gVenture/Scherr enk nunder EA	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB 4A972-RIB 4640VT3P	AMX,B STX STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V CM,C2 AC,P5V CM,C2 CM,C2 AC,P5V MQ,P5 AC,P5V AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V AC,P2	97 98 100 96 99 98 97 98 99 99 99 98 96	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.5 185.4	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2 16.6 15.9 14.4 15.1 15.8	1 1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 2	575 568 567 567 565 559 557 558 557 553 553 553 553 557	2 3 4 5 6 7 9 8 10 13 14 15 11	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.6 191.0 201.8 197.2	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 165.9	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7	0 of 54 197.8 201.8 205.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roSeed yna-Gro yVenture/Scherr enk enunder EA dederal	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V	97 98 100 96 99 98 97 98 99 99 99 98 96	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.6 185.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2 16.6 15.9 14.4	1 1 1 1 1 1 2 1 1 2 1 3 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557	2 3 4 5 6 7 9 8 10 13 14 15 11	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.6 191.0	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 165.9	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb airie Brand oseed yna-Gro yVenture/Scherr enk nunder EA dederal enk urry ensman	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMX RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX HXT,RR2 STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V	97 98 100 96 99 98 97 98 99 99 99 98 96 100 97	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.6 185.5 185.4 185.4 185.3	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0 15.9	1 1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 1 2 1 1 2 1 1 1 1	575 568 567 567 565 557 558 557 553 553 553 557 556 550 550 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 166.0 168.3	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro ttham tan Pro king EA ng ekalb airie Brand oSeed yna-Gro yVenture/Scherr enk nunder EA deral enk urry ensman EA	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMx RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB	AMX,B STX STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 CM,C2 AC,P5V	97 98 100 96 99 98 97 98 99 99 99 98 96 100 97 96	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0	1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 1 2 1 1 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557 556 552 550 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 164.0 168.3	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer /na-Gro ttham tan Pro king EA ng ekalb airie Brand oSeed /na-Gro yVenture/Scherr enk lunder EA detral enk urry ensman EA	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMX RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT3P	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V	97 98 100 96 99 98 97 98 99 99 99 96 100 97 96 99 101	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8 184.8	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0 15.9 15.5 16.0	1 1 1 1 1 1 1 2 1 1 2 1 3 3 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2	575 568 567 567 565 559 557 558 557 553 553 553 557 556 552 550 550 551 548	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2 194.9 195.5 188.5	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 164.0 168.3 179.0	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer /na-Gro /tham tan Pro king EA ng skalb airie Brand oSeed /na-Gro gVenture/Scherr enk hunder EA dderal enk urry ensman EA useed	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMx RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB	AMX,B STX STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V	97 98 100 96 99 98 97 98 99 99 99 98 96 100 97 96	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0	1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 1 2 1 1 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557 556 552 550 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 164.0 168.3	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb tairie Brand toSeed yna-Gro gVenture/Scherr enk enunder EA dederal eensman EA useed ekalb dederal	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB 4A972-RIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC	AMX,B STX STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V MQ,P5 AC,P2 AC,P5V AC,P2 AC,P2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V	97 98 100 96 99 98 97 98 99 99 99 96 100 97 96 99 99	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.4 186.9 186.7 185.6 185.5 185.4 184.8 184.8 184.8 184.8 184.2 183.9 183.5 183.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 15.9 14.4 15.1 15.8 16.0 15.9 15.5 16.0 15.5 16.0	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1	575 568 567 567 565 559 557 553 553 553 557 556 550 550 551 548 548	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2 189.7 186.5 188.5 192.0 197.8 196.7	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5 175.7 178.8	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 165.9 166.4 164.0 168.3 179.0 175.7 164.5 164.5	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 192.8 186.1	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 193.1 195.3 192.3	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer /na-Gro ttham tan Pro kthing EA ng ekalb airie Brand oSeed /na-Gro yVenture/Scherr enk nunder EA detral ernk urry ensman EA sseed ekalb detral ekalb detral ensman tan Pro	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMX RL5718HBW^ RK596SSTX 7396VT2PRIB 4A972-RIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V	97 98 100 96 99 98 87 97 98 99 99 99 96 100 97 96 99 98	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.4 186.9 186.7 185.6 185.5 185.4 184.8 184.8 184.4 184.2 183.9 183.5 183.5 183.2	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 15.9 14.4 15.1 15.8 16.0 15.9 15.5 16.0 15.7 15.6	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1	575 568 567 567 565 559 557 553 553 553 553 550 550 551 548 544 550 548 544 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 29	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 197.2 189.7 186.5 188.5 192.0 189.7 195.9	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5 175.7 178.8 176.1 171.3	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 164.0 168.3 179.0 175.7 164.5 153.5 165.1	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 196.4 192.8 186.1 197.1	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 193.1 195.3 192.3 203.2	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb airie Brand oSeed yna-Gro gVenture/Scherr enk aunder EA deral enk urry ensman EA useed ekalb ederal ensman tan Pro uTech/G2 Gen	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMx RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB 1M96-3P 5F-198^	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT2P STX,B STX,B VT2P STX,B STX,B VT2P STX,B STX,B VT2P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V	97 98 100 96 99 98 97 98 99 99 99 96 100 96 99 101 98	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8 184.8 184.2 183.9 183.5 183.5 183.5 183.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0 15.9 14.0 15.9 15.5 16.0 15.9 15.5 16.0 16.7 15.5 16.0 16.7	1 1 1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 1 2 1 1 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557 556 552 550 550 551 548 544 550 548 544 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 29 24	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 194.0 189.7 186.5 188.5 192.0 197.8 196.9	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 175.7 178.8 176.1 171.3 171.3	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 165.9 156.1 166.4 164.0 168.3 175.7 164.5 153.5 165.1 173.5	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 196.4 192.8 186.1 197.1 193.5	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 193.1 195.3 192.3 203.2 205.5	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roseed yna-Gro gVenture/Scherr enk uunder EA deral enk uurry ensman EA useed ekalb deral fensman tan Pro uTech/G2 Gen hannel	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMX RL5718HBW^ RK596SSTX 7396VT2PRIB 4A972-RIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB 1M96-3P 5F-198^ 199-29STXRIB GC	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT2P,STX,B STX,B VT2P STX,B STX,B VT2P STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V AC,P5V AC,P5V AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V AC,P2 AC,P5V	97 98 100 96 99 98 97 98 99 99 99 96 100 97 96 99 101 98 100 97 98	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8 184.8 184.2 183.9 183.5 183.5 183.5 183.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0 15.9 15.5 16.0 16.7 15.1 15.6 16.7	1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	575 568 567 567 565 559 557 558 557 553 553 553 553 553 555 550 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 23 29 24 25	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 191.6 191.0 201.8 197.2 204.8 194.9 197.2 198.5 198.5 199.0 197.8 196.9 196.9	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5 175.7 178.8 176.1 171.8 176.1 171.1 176.1	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 164.5 169.9 156.1 166.4 164.0 168.3 179.0 175.7 164.5 153.5 165.1 173.5 165.1 173.5	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 196.4 192.8 186.1 197.1 193.5 201.8	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 193.1 195.3 192.3 203.9 205.5 190.1	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA nng ekalb rairie Brand roSeed yna-Gro	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPMx RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB 1M96-3P 5F-198^	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B VT3P STX,B VT2P STX,B STX,B VT2P STX,B STX,B VT2P STX,B STX,B VT2P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V	97 98 100 96 99 98 97 98 99 99 99 96 100 96 99 101 98	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.8 187.4 186.9 186.7 185.5 185.4 185.3 184.8 184.8 184.8 184.2 183.9 183.5 183.5 183.5 183.5	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 16.6 15.9 14.4 15.1 15.8 16.0 15.9 14.0 15.9 15.5 16.0 15.9 15.5 16.0 16.7 15.5 16.0 16.7	1 1 1 1 1 1 1 2 1 1 2 1 3 1 1 1 2 1 1 2 1 1 1 1	575 568 567 567 565 559 557 558 557 553 553 553 557 556 552 550 550 551 548 544 550 548 544 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 29 24	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 178.6 191.0 201.8 197.2 204.8 194.0 189.7 186.5 188.5 192.0 197.8 196.9	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 175.7 178.8 176.1 171.3 171.3	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 165.9 156.1 166.4 164.0 168.3 175.7 164.5 153.5 165.1 173.5	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 196.4 192.8 186.1 197.1 193.5	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 193.1 195.3 192.3 203.2 205.5	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer yna-Gro atham tan Pro king EA ng ekalb rairie Brand roSeed yna-Gro gVenture/Scherr enk under EA dederal enk urry fensman EA useed ekalb dedral raire Brand roSeed yna-Gro gVenture/Scherr enk under EA useed ekalb ederal ensman tan Pro uTech/G2 Gen hannel tan Pro fensman etham	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB 1M96-3P 5F-198^ 199-29STXRIB GC TP 39-98 SS W 90979STX LH4645VT2PRORIB	AMX,B STX STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX,B VT3P STX,B	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V MQ,P5 AC,P5V	97 98 100 96 99 98 98 99 99 99 98 86 97 96 100 97 96 98 99 98 99 99	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.4 186.9 186.7 185.6 185.5 185.4 185.3 184.8 184.4 184.2 183.9 183.5 183.5 183.5 183.5 183.5 182.0 182.0 181.7	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.2 16.6 15.9 14.4 15.1 15.8 16.0 15.9 15.5 16.0 15.5 16.0 15.1 15.6 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 15.4 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	575 568 567 567 565 559 557 553 553 553 553 555 550 550 551 544 544 548 548 548 548 548 548	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 29 24 25 26 30 30 30 30 30 30 30 30 30 30	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 197.6 191.0 201.8 197.2 204.8 197.2 204.8 197.2 186.5 188.5 188.5 192.0 197.8 196.7 195.9 196.7 195.9 198.9 187.1	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5 175.7 178.8 176.1 171.3 142.7 169.1 169.1 169.1	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 165.9 165.9 165.0 166.4 164.0 168.3 179.0 175.7 164.5 165.1 173.5 160.2 137.6 178.7 160.2	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 192.8 186.1 197.1 193.5 201.6 206.6 184.8	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 179.1 188.6 199.3 203.2 205.5 190.1 176.1 172.8 197.9	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oneer vna-Gro ttham tan Pro king EA ng skalb airie Brand oSeed vna-Gro yVenture/Scherr enk enunder EA deral enk urry ensman EA deral ensman tan Pro tan Pro tan Pro tensman tan Pro tensman tan Pro tensman tan Pro tensman	P9917AMX GC D37SS60 LH4859SSRIB TP 39-00 SS VS96-578 5A992-RIB 5800-3000GTA DKC47-35RIB GC 4895GT3 1399-3000GT D39VP14 VPmx RL5718HBW^ RK596SSTX 7396VT2PRIB 4A972-RIB 4640VT3P RK605SSTX 417-91 GC W 90967STXRIB 5A993-RIB 3014VT2P DKC48-12RIB GC 5050SSTAX W 70975VT3PRIB 1M96-3P 5F-198^ 199-29STXRIB GC TP 39-98 SS W 90979STX	AMX,B STX STX,B STX,B STX,B STX,B 3011A STX,B 3000GT 3000GT VT3P HX,RR2,AQ STX VT2P,B STX,B VT3P STX HXT,RR2 STX,B VT3P STX,B VT3P STX,B VT3P STX,B ST	AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V AC,P5V CM,C2 AC,P5V CM,C2 AC,P5V MQ,P5 AC,P5V	97 98 100 96 99 98 99 99 99 99 96 100 97 96 100 97 96 99 101 98 100 97 98	192.9 192.5 191.0 190.9 189.5 189.4 188.3 187.4 186.9 186.7 185.6 185.5 185.4 185.3 184.8 184.4 184.2 183.9 183.5 183.5 183.5 183.5 182.0 182.0 181.7	15.6 15.6 16.1 16.2 15.3 15.6 16.3 16.7 16.2 16.6 15.9 15.1 15.8 16.0 15.9 15.1 15.6 15.1 15.6 15.4 16.0 15.7	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	575 568 567 567 565 559 557 553 553 553 553 553 550 550 550	2 3 4 5 6 7 9 8 10 13 14 15 11 12 16 18 19 17 21 27 20 22 23 29 24 25 26 30 30 30 30 30 30 30 30 30 30	199.4 198.3 202.2 196.7 196.4 203.3 189.6 194.7 194.1 212.0 204.8 197.6 191.0 201.8 197.2 204.8 197.2 204.8 194.0 189.7 186.5 192.0 197.8 196.7 195.9 195.9 195.9 195.2	180.4 181.5 166.2 168.7 177.3 176.0 200.2 165.0 178.6 188.8 172.7 182.3 162.1 176.7 178.4 165.4 174.0 169.2 160.6 173.5 175.7 178.8 176.1 171.3 142.7 169.0 169.0 169.0 179.0	173.2 165.1 176.5 181.9 169.7 168.9 164.2 178.6 168.3 164.2 164.9 165.9 156.1 166.4 164.0 168.3 179.0 175.7 164.5 153.5 165.1 173.5 165.1 173.5 165.1 173.5	Top 3 204.8 207.6 209.8 200.8 205.6 198.9 189.0 203.4 198.8 174.3 197.4 211.5 195.4 194.4 202.3 193.7 206.1 191.5 204.7 188.3 204.0 196.4 192.8 186.1 197.1 193.5 201.8 201.6 206.6	0 of 54 197.8 201.8 205.8 199.7 201.4 187.2 200.2 204.4 206.9 194.8 194.2 202.9 192.7 187.5 211.8 192.0 197.4 198.6 179.1 188.6 193.1 195.3 192.3 203.2 205.5 190.1 176.1	tes 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Yield Range: 181.9-220.2 Yield Average: 201.6 Top \$ Per Acre: \$643.00

Corn Field Notes: South Dakota Southeast

Mark Tollefson, FIRST Manager

Beresford—Rainfall of 10.7" in June was 6.3" more than the 30year average for that month. This test was located in an area that was well drained. By the end of June, the tests looked good with uniform plant heights. The subsoil was very dry prior to the June rains. This site avoided most of the frost damage that was common in other parts of the state. The grain was dry and in good shape. FIRST farmer members Ken and Jason Frick were happy with yields this year, with some field averages around 200 bu, per acre.

Chancellor—The soil moisture content across the area was quite low prior to planting this year. The 8.1" of rainfall received in June was soaked up by the soil profile very well. It proved to be critical to support great corn yields. The test was weed-free with little to no disease. We had very tall corn that stood really well for harvest. It was a little surprising to see fairly low grain moistures in all hybrids and maturities.

Colton—This site started well. June rainfall was at least 7", which is about 2.5" above normal. However, July and August rainfall was below average. The crop stood very well at harvest. Ears were well pollinated. They were also well developed and contained complete sets of deep kernels, filled clear to the tip. FIRST farmer member Flovd Snoozy's corn crop produced good yields, but the loss of some plants from the heavy rains in June, which caused ponding, hurt his field average. This was a good clean test with some nice yields averaging 205 bu. per acre in the earlyseason test and 207.7 bu. per acre in the full-season test.

Ethan—We had a good start to the growing season here when we planted on May 7. July rainfall amounted to 2.5", which is only 0.1" below the 30-year average. June and August rainfall totals ran slightly above average and helped contribute to some nice crops in this area. FIRST farmer member Lewis Bainbridge was pleased with

his corn yields this year. Test yields averaged 189 bu. per acre in the early-season test and 193.5 bu. per acre in the full-season test.

Flandreau—Total June rainfall was plentiful at 7," which was 2.9" above the 30-year average. Fortunately, the test area drained well and the crop showed no sign of damage from all the rain. The average plant height was around 7' tall. A Sept. 14 freeze damaged many area crops. A blustery wind of around 25 mph blew during harvest, but stalk health proved to be strong. Many hybrids still had their tassels on at harvest.

Salem—This location had a nice stand of corn with no stalk lodging or ear issues. Thanks to the mild weather all season, the corn crop was not severely stressed all growing season. Rainfall was limited in July with only 1.03" recorded. August rainfall of 4" was 0.85" above average. These timely rains and moderate temperatures were major contributors to some nice corn yields this year.

Site Informatio	n		2014 Rainfall (inches)								
South Dakota S	Southeast						Mon	thly		Vs. 30-year avg.	
Site	Soil Texture	Tillage	Prev. Crop	Units N	Planted	Мау	June	July	August	July	August
Beresford	silty clay loam	conventional	soybean	166	5/5	4.02	10.69	2.48	4.25	-0.80	1.40
Chancellor	silty clay loam	conventional	soybean	120	5/3	3.07	8.05	1.98	3.03	-1.09	0.13
Colton	clay loam	conventional	soybean	196	5/3	2.89	7.20	0.94	2.96	-2.59	-0.57
Ethan	loam	no-till	soybean	125	5/7	2.86	5.89	2.50	4.03	-0.09	0.98
Flandreau	clay loam	conventional	soybean	140	5/6	2.89	7.20	0.94	2.96	-2.60	-0.54
Salem	loam	conventional	soybean	212	5/6	3.52	6.31	1.03	4.01	-2.46	0.85
	Rainfall obtained or	n-site (* denoted) (or estimated fror	n <i>www.weather</i>	<i>plot.com.</i> R	Rainfall Norn	nals (1981	-2010) fro	m National	Climatic Data	Center.

FIRST South Dakota Southeast Corn Results

EARLY-SEASOI											Top 30	of 54 te	sted		
Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Beresford	Chancellor	Colton	Ethan	Flandreau	Salem
REA	5A992-RIB	STX,B	AC,P5V	99	215.6	16.1	1	641	1	213.0	246.6	223.0	191.6	194.2	225.2
REA LG Seeds	5A029-RIB LG5502STX	STX,B STX	AC,P5V AC,P5V	102 102	214.2 212.0	16.2 17.2	2 1	636 624	3	219.3 207.4	236.0	221.4 222.4	192.9 190.5	183.6 177.4	231.7 233.8
LG Seeds	LG5499STXRIB	STX,B	AC,P5V	100	211.1	17.3	<u>i</u>	621	4	217.4	239.5	204.5	220.6	174.8	209.9
Wensman	W 7320VT3PRIB	VT3P,B	AC,P5V AC,P5V	101	209.9 208.0	18.0	1	614	8 5	208.0 194.8	231.8 237.9	211.2	193.9 185.4	190.2 190.8	224.1 226.9
Federal Titan Pro	5050SSTAX TP 39-00 SS	STX STX,B	AC,P5V AC,P5V	100	207.9	15.8 16.0	<u>1</u> 1	620 619	<u>5</u>	194.8	230.0	212.1 227.6	193.6	182.4	216.9
Heine	735STX	STX	AC,P2	102	207.5	15.9	1	618	7	187.2	248.7	215.3	189.8	182.9	220.9
Dyna-Gro	D41SS71	STX STX,B	AC,P5V	101 98	207.5 205.5	16.6	1 1	614 612	9 10	207.6 188.8	232.9 239.5	226.5 214.9	193.0	164.4 191.9	220.5
Latham AgVenture	LH4859SSRIB VPmx RL6283HBAW^	0T	AC,P5V MQ,P1	102	205.3	15.8 17.1	1	605	15	201.9	213.9	210.5	173.5 197.4	173.5	224.4 234.6
Great Lakes	5283STXRIB	STX,B	AC,P5V	102	205.3	17.6	1	603	16	211.2	225.7	209.0	196.6	175.3	214.0
Dyna-Gro Renk	CX14203 RK605SSTX	STX STX	AC,P5V AC,P2	103 100	204.9 204.6	18.2 16.0	1 1	598 609	19 11	211.7 184.0	241.2 245.5	202.3 213.0	194.9 187.3	172.6 181.7	206.5 216.1
REA	5A022-RIB	STX,B	AC,P5V	102	204.0	15.9	1	608	13	220.9	251.9	212.1	192.8	151.6	195.7
ProSeed	1399-3000GT	3000GT	CM,C2	99	204.2	16.1	1	607	14	188.8	231.5	210.4	188.5	190.1	216.0
Latham Latham	LH5145VT2PRODGRIB LH5215VT2PRORIB	VT2P,DG,B VT2P,B	AC,P5V AC,P2	101 102	203.9 203.5	15.6 19.1	2 1	609 590	12 28	200.8 180.1	243.9 234.1	212.7 217.6	185.8 202.6	171.0 181.0	208.9 205.6
Titan Pro	TP 39-02 SS	STX,B	AC,P5V	102	203.4	17.2	1	599	17	203.9	232.3	219.1	185.5	173.1	206.4
Renk	RK633SSTX	STX,B	AC,P2	101	202.0	16.7	1	597	23	186.2	212.5	202.9	194.6	189.8	226.1
Wensman Great Lakes	W 91011STXRIB 4879STXRIB	STX,B STX,B	AC,P5V AC,P5V	101 98	201.9 201.7	16.4 16.4	1 1	599 598	18 20	188.2 184.6	229.7 228.7	210.0 217.0	206.2 193.9	162.9 185.6	214.6 200.6
Renk	RK666SSTX	STX,B	AC,P2	102	201.7	17.3	1	594	26	180.9	236.8	203.1	189.4	179.0	221.0
REA	5A993-RIB	STX,B	AC,P5V	99	201.4	16.7	1	596	25	197.4	232.2	214.0	185.8	164.5	214.4
Latham Federal	LH4955VT2PRORIB 5140SSTAXRIB	VT2P,B STX,B	AC,P5V AC,P5V	99 101	200.8 200.8	15.9 16.6	1 1	598 594	21 27	194.4 207.2	235.0 223.0	208.7 203.1	184.7 183.4	174.7 185.4	207.4 202.8
Dekalb	DKC51-19RIB GC	VT3P,DG,B	AC,P2	101	200.1	15.7	1	597	24	190.1	224.4	203.8	193.5	174.9	213.9
ProSeed	13101SSRIB	STX,B	AC,P2	101	199.4	16.7	1	590	29	186.4	225.7	200.9	185.4	180.8	217.4
Pfister Prairie Brand	1740SS 4895GT3	STX 3000GT	AC,P5 CM,C2	98 98	199.4 198.8	17.1 16.3	1 1	588 590	31 30	197.1 191.5	230.7 218.2	209.5 191.0	184.9 193.0	163.7 196.3	210.3 202.7
Dekalb	DKC53-56RIB CK	STX,B	AC,P5V	103	202.1	16.8	1	597	22	192.7	230.9	210.0	193.3	172.3	213.4
Test Average =					199.3 9.8	16.7 0.8	1 1	589		1 89.7 26.6	226.2 19.4	205.0 16.0	1 89.0 13.7	175.5 15.0	210.2 17.1
LSD (0.10) =	TEST 103-107 Day 0	RM			9.0	0.0				20.0	19.4	10.0		of 54 1	
Curry	627-44	HX,RR2,AQ	MQ,P5V,R	107	220.2	18.2	1	643	1	222.1	248.4	205.7	208.7	196.5	239.7
Latham	LH5715VT2PRORIB	VT2P,B	AC,P2	107	215.8	20.4	1	618	7	219.5	242.7	202.8	211.8	191.8	226.4
Prairie Brand	5815SX	STX	CM,C2	107	215.6	20.2	1	619	6	235.5	237.0	207.6	193.6	194.5	225.5
Heine Channel	744VT3PRORIB 205-19STXRIB	VT3P,B STX,B	AC,P2 AC,P5V	104 105	211.9 211.8	15.8 17.1	<u>2</u> 1	631 624	<u>2</u> 4	193.8 207.2	212.4 227.8	231.1 222.5	206.9 196.8	194.9 202.0	232.0 214.5
Titan Pro	2M04-2P	VT2P,B	AC,P2	104	211.5	19.2	1	612	11	214.1	224.2	201.8	201.7	208.7	218.5
REA	6A032-RIB	STX,B	AC,P5V	103	211.3	18.3	1	616	8	210.6	223.9	215.9	196.3	184.5	236.6
Latham NuTech/G2 Gen	LH5659SSRIB 5Z-707^	STX,B OI,AQ	AC,P5V MQ,P1V,R	106 107	211.0 210.2	19.7 17.7	<u>1</u> 1	608	15 9	215.3 185.1	238.5	208.2	196.8 201.8	185.4 211.5	221.6 222.4
LG Seeds	LG5523STX	STX	AC,P5V	105	209.6	18.5	<u>i</u>	610	13	201.8	234.4	223.3	192.4	191.8	213.8
REA	6A071-RIB	STX,B	AC,P5V	107	209.3	20.2	1	601	19	194.2	232.8	217.0	197.3	199.4	214.8
Titan Pro Federal	TP 39-05 SS 5530VT3P	STX,B VT3P	AC,P5V AC,P2	105 105	209.1	19.6 15.6	1 2	603	16 5	201.0 190.5	235.1 232.0	205.6 205.4	194.4 207.9	195.0 200.0	223.2 217.6
Pfister	2399GT3000	3000GT	CM,C2	104	207.4	16.7	4	613	10	193.2	222.2	215.6	208.0	187.9	217.5
King	6707GT	GT STX,B	CM,C2 AC,P5V	103	207.2	16.8	3	612	12 20	215.7	218.2	204.4	204.4	184.1	216.6
Wensman Curry	W 91073STXRIB 726-56AM	AM,B	MQ,P5V,R	107 106	207.2	18.9 18.8	1 2	601 601	21	221.1	222.3 227.5	222.4 185.3	195.8 193.1	183.0 192.1	198.7 221.7
NuTech/G2 Gen	5H-806^	HX,RR2	CM,C2	106	206.3	18.5	1	601	22	208.8	220.1	213.2	189.5	182.1	223.9
Titan Pro Channel	TP 37-06 SS 203-88STXRIB	STX,B STX,B	AC,P5V AC,P5V	106 103	206.3 206.2	19.7 16.9	1 1	595 609	26 14	191.8 191.4	224.2 219.4	233.1 226.8	188.7 185.8	192.6 190.6	207.3 222.9
Pfister	2447SS	STX	AC,P5	106	206.2	18.5	1	601	23	217.0	224.3	198.3	198.9	188.1	210.3
Latham	LH5744-3000GT	3000GT	AVC,C2	107	206.0	20.1	1	592	28	197.8	228.1	212.6	196.1	179.7	221.7
Dairyland	DS6805 W 7330VT3PRIB	STX	CM,C2	105	205.7	18.1	2	601	24 17	204.4	225.5 233.0	207.5	198.5 203.9	182.7	215.7
Wensman REA	6A062-RIB	VT3P,B STX,B	AC,P5V AC,P5V	104 106	205.2 205.0	17.6 17.6	<u>1</u> 1	602 602	17 18	208.1 188.7	225.0	200.0 222.1	187.0	179.0 184.9	207.4 222.5
Great Lakes	5755STXRIB	STX,B	AC,P5V	107	204.7	19.1	1	593	27	190.6	235.0	205.7	197.1	193.0	207.0
Prairie Brand	1041RA	STX,B	CM,C2 AC,P2	104	204.6 204.5	18.2	1 1	597 500	25 31	223.0	203.6 228.5	206.7	194.2	185.5	214.7
Renk Renze	RK699SSTX 3255RA	STX,B STX,B	AC,P2 AC,P5	105 107	204.5	19.6 18.7	1	590 591	30	190.3 205.7	212.3	213.8 198.6	184.6 187.3	204.2 200.6	205.5 215.4
NuTech/G2 Gen	5X-806^	HXT,RR2	MQ,P5V	106	203.2	18.4	1	592	29	189.6	216.7	221.6	198.5	185.7	206.8
Dekalb Test Average -	DKC53-56RIB CK	STX,B	AC,P5V	103	214.0 203.8	17.3 18.7	1	630 592	3	222.0 200.3	221.2 221.9	217.0 207.7	189.5 193.5	209.6 187.3	224.9 212.3
Test Average = LSD (0.10) =					9.6	0.8	1	- 39Z		28.4	18.4	17.4	15.1	14.3	18.5
	gnificantly above test ave	rage.													

Yield Range: 154.3-185.9 Yield Average: 172.3 Top \$ Per Acre: \$563.00

Corn Field Notes: Minnesota West Central

Mark Querna, FIRST Manager

Bird Island—These soils were saturated from the May 16 planting date through June. This stunted root and plant development. Over 12" of rain fell in June alone. This crop was never able to reach full potential, even after dry conditions prevailed through the rest of the growing season. While this site did not have any plots that were drowned out, it was visibly affected by too much water in June.

Clinton—This location received excessive rainfall late in May and June. It was drier in July, then 5" of rain fell in August. Cooler-thannormal temperatures were ideal for good pollination. As a result of overly saturated soils in June, yields dropped in the lower areas of this level site. Even so, every plot still looked great at harvest, and FIRST farmer members Doug and Nathan Nelson were quite pleased with yields this fall.

Glencoe—The tests north of Glencoe were conducted with FIRST farmer members Gary, Mark and Mike Krcil. Planting was delayed because of the wet spring, and this site was one of the few drier spots of all of the Krcil's fields. Still, the pattern tiling could not work fast enough all through June. Parts of the tests had severe issues with stunting and slow growth from the excess water. Mark commented, "yields are from zero to 210 bu. per acre." Moistures were higher in the early-season test, which had more plots in compacted soils. Because of the wet conditions through June, the Krcils were unable to plant 30% of their total acres.

Granite Falls—Conditions were quite good here for a May 15 planting date. Excessive rain through June led to more field variability, even in uniform soil types. FIRST farmer member Keith Beito reported 23.5" of rainfall during the growing season, with 10.1" in June alone. The slight rise in elevation led to yield boosts of up to 25 bu. per acre. The full-season test was located on a slightly higher elevation than the early-season test, accounting for some of the higher yields. A

light frost occurred on Sept. 13 and a hard frost on Oct. 6.

Litchfield—Stalks were brittle here, as was the case at most Minnesota sites this year. Yields dropped on low-lying soils as a result of excessive moisture in late May and June. In spite of this, good fertility levels from years of turkey manure applied to this land helped reduce the yield variation from saturated soils. A patchy frost event on Sept. 13 did not affect the corn in these tests. Some of FIRST farmer member Tom Walsh's other corn was reduced to 130 bu. per acre by the frost.

Nicollet—Excessive moisture through June slowed plant development. Temperatures were cooler than average this summer. This prevented stress during a dry pollination period but slowed crop development. Frost on Sept. 13 had minimal impact on the yields in these tests. While this site was on level and uniform land, even the smallest depressions resulted in yields that were 25 bu. per acre lower than those on higher ground.

Site Information	1						2	014 Rair	nfall (inch	ies)	
Minnesota Wes	t Central						Mon	thly		Vs. 30-ye	ar avg.
Site	Soil Texture	Tillage	Prev. Crop	Units N	Planted	Мау	June	July	August	July	August
Bird Island*	clay loam	conventional	soybean	150	5/16	3.04	11.99*	1.98	3.49	-1.58	0.00
Clinton	silty clay loam	conventional	soybean	155	5/16	3.09	9.36	2.74	6.78	-0.85	3.67
Glencoe	clay loam	conventional	soybean	145	5/24	6.40	9.32	2.85	2.60	-1.52	-1.83
Granite Falls*	clay loam	conventional	soybean	180	5/15	2.90	10.10	2.00	5.10	-1.02	1.83
Litchfield	clay loam	conventional	soybean	210	5/24	4.07	3.90	1.66	4.27	-2.17	0.41
Nicollet	clay loam	conventional	soybean	160	5/24	4.67	8.84	1.78	2.43	-2.51	-1.79

FIRST Minnesota West Central Corn Results

Fig. Part	EARLY-SEASO	N TEST 93-98 Day (CRM											Top 30	of 63 te	ested
Dynach	Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Bird Island	Clinton	Glencoe‡	Granite Falls	Litchfield	Nicollet
Continuity 98-38PSS STX B																
Parie Bearl 4895613 300061																
GS-PGS-STR/RB STR.B ACPS 98 181.4 192. 0 543 13 145.5 224.0 135.9 187.2 208.9 186.1			3000GT													
Warsenson Warsenstrial STAR ACPS 98 1808 184 0 645 9 1472 215.1 151.2 187.7 203.1 774.0 601 6010 6010 772.8 ACPS 94 179.4 176 0 544 11 146.5 203.6 151.3 194.9 204.1 168.8 6010 6																
Vising																
Debails DRCA4-13RB GC STKB AC,PSW 98 179.3 171. 0 546 8 151. 212. 146.1 200.5 194.5 171.0 150.6 150.5 150.5 150.5 194.5 171.0 150.5 15		VS94-571	VT2P,B	AC,P2	94	179.7	16.7	0	549	5	144.3	219.3	148.8	188.7	203.1	174.0
Latham LH469SSGRIB STK, B AC,PSW 93 179.1 181.1 0 541 16 151.4 210.6 129.9 204.9 197.1 190.5 187.6 182.6 182.6																
Lisa endes Lisa et al. Lis																
Renk REGISTRY STK ACPE 94 178.1 17.7 0 540 17 15.3 20.08 18.4 18.66 208.1 17.15 17.8 18.6 208.1 17.15 17.15 18.6 208.1 17.15 17.15 18.6 208.1 17.15 17.15 18.6 208.1 17.15																
Wensman W.90941STX STX ACPSW 94 177.8 16.8 0 543 15 147.7 21.2 149.2 197.6 184.1 174.9 176.8 184.1 174.9 176.8 184.1 174.9 176.8 184.1 174.9 176.8 184.1 174.9 176.8 184.1 174.9 176.8 184.1 184.4 176.8																
NuTechQC Gen SK-6980 HX,FRIPZAD MQ,PSV 98 176.3 17.7 0 555 18 151.9 21.07 145.9 197.6 188.1 163.4 Coldies Harvest 30006T1 30006T1																
Goldentarvest Goldentarves						176.3										
Trunder Trun						175.7										
Gold Country 95-38/83P																
Renk RK56BVT3P VT3PB AC,P2 95 T4.0 T.6 0 528 24 150.1 215.7 153.8 192.7 T7.7 153.9 192.7 Thunder 9595VT3PRIB VT3PB AC,P2 95 T3.5 T.7 0 528 22 140.0 213.6 136.5 189.5 182.4 T8.9 T1.0 T1				,												
Thunder 9999/TSPRIB			VT3P,B	AC,P2										192.7	177.7	
Than Pro																
Latham			,													
Dahlman R47-SSVT3PRIB V13PB ACP2 94 172.8 17.1 0 527 28 150.4 197.0 156.3 186.5 191.1 155.7																
NuTerVic2 Gen SX-894^ HXT.RR2 MQ.PSV 94 172.0 16.6 0 526 30 147.7 196.8 157.9 182.7 179.9 167.2 Viking C44-95R VT3PB AC.PSV 95 171.8 15.8 0 529 31 148.6 195.7 147.7 182.8 184.3 165.8 Declaib DKC48-12RIB CK STX,B AC.PSV 91 172.5 17.8 0 529 11.8 18.0 1	Dahlman		VT3P,B	AC,P2									156.3	186.5		
Viking C44-95R																
Number N																
Test Average	•			,												
Second Country Count		DKC48-12RIB CK	STX,B	AC,P5V	98					6						
Company Comp									525							
Latham LH5215VT2PRORIB VT2P, AC,PSV 100 182,0 19.4 0 547 4 15.5 26.8 126.2 219.6 208.4 16.4.0 NISSER STK,B AC,PSV 101 182,6 18.4 0 551 1 165.4 26.8 126.2 219.6 208.4 16.4.0 NISSER STK,B AC,PSV 101 182,6 18.4 0 551 1 165.4 26.8 126.2 219.6 208.4 16.4.0 NISSER STK,B AC,PSV 102 182.1 18.5 0 549 2 160.6 217.0 124.6 223.0 212.4 155.1 Croplan A99SSYRB GC STK,B AC,PSV 102 182.1 18.5 0 549 2 160.6 217.0 124.6 223.0 212.4 155.1 Dahlman R50-306SRIB STK,B AC,PSV 102 182.1 18.5 0 548 3 168.2 209.3 121.8 205.6 209.1 175.3 Dahlman R50-306SRIB STK,B AC,PSV 102 179.2 21.9 0 525 5751.4 210.5 127.9 206.4 208.6 170.4 Latham LH5219SSRIB STK,B AC,PSV 102 179.2 21.9 0 525 5751.4 210.5 127.9 206.4 208.6 170.4 Table Str. Str. Str. Str. Str. Str. Str. Str.	, ,	TEST 99-102 Day 0	:RM			0.0	0.0				10.0	17.0	22.0			
GS-edes		•		AC P2	102	183.0	20.6	1	542	7	164.4	216.3	132.6			
Cold Country 102-88RSS STX,B AC,P5V 102 182.1 18.5 0 549 2 160.6 217.0 124.6 223.0 212.4 155.1			,													
Croplan Ag99SS/RIB GC STX, B AC, P5V 99 181.6 18.4 0 548 3 168.2 20.9.3 121.8 20.5 209.1 175.2 176.2 121.1 180.7 18.5 0 544 6 167.6 214.9 123.9 200.2 201.2 176.2 121.1 201.2 176.2 121.2 176.2 121.2 176.2 121.2 176.2 121.2 176.2 121.2 176.2 121.2 176.2 121.2 176.2 176.2 121.2 176.2																
Dahiman R50-306SSRIB STX,B AC,P2 101 180.7 18.5 0 544 6 167.6 214.9 23.9 20.2 201.2 176.2																
Latharm																
Titan Pro		LH5219SSRIB		AC,P5V	102	179.2	21.9	0	525	25	151.4	210.5	127.9	206.4	208.6	170.4
Titan Pro TP 31-01 3011A 3011A AVC,C2 101 177.5 18.5 1 535 10 157.1 201.2 119.5 208.8 195.3 182.9 Dekallb DKC54-38RIB GC STX,B AC,P5V 104 176.9 19.8 0 527 20 138.0 216.2 134.7 202.0 201.7 168.6 Dekallb DKC54-38RIB GC STX,B AC,P5V 103 176.7 19.2 0 529 17 165.8 204.6 121.7 191.9 206.3 176.1 Viking T51-01R GT,B CM,C2 101 176.6 17.8 1 535 11 156.3 209.4 48.7 198.7 180.1 166.4 Nob-See-Co Innotech ICS112^^ 3011A CM,C2 101 176.6 17.8 1 535 11 156.8 20.4 148.7 198.7 190.9 191.3 176.3 Wensman W 9325STXRIB STX,B																
Dekalb DKC54-38RIB GC STX,B AC,P5V 104 176.9 19.8 0 527 20 138.0 216.2 134.7 202.0 201.7 168.6				,												
Viking T51-01R GT,B CM,C2 101 17.66 17.8 1 535 11 156.3 209.4 148.7 198.7 180.1 166.4 Rob-See-Co Innotech IC5112^ 3011A CM,C2 101 176.2 18.6 0 530 16 169.0 194.3 136.4 195.8 186.3 175.1 Wensman W 9325STXRIB STX, B AC,P5V 102 176.0 19.1 0 528 18 136.8 226.6 121.0 200.9 194.3 176.3 Renk RK605SSTX STX AC,P5V 101 175.6 19.1 0 526 24 144.8 217.5 124.0 207.4 205.8 154.1 NuTech/G2 Gen 5H-502^A HX,RR2 MQ,P5V 102 175.5 18.8 0 527 21 156.9 218.1 20.6 202.7 178.5 170.0 Titan Pro TP 39-02 SS STX,B AC,P5V 10			STX,B													
Rob-Sec-Co Innotech IC5112^ 3011A CM,C2 101 176.2 18.6 0 530 16 169.0 194.3 136.4 195.8 186.3 175.1																
Wensman W 9325STXRIB STX,B AC,P5V 102 176.0 19.1 0 528 18 136.8 226.6 121.0 200.9 194.3 176.3 Renk RK605SSTX STX AC,P2 100 175.7 17.5 0 534 12 160.2 193.6 130.1 207.3 190.9 171.8 Dyna-Gro D41SS71 STX AC,P5V 101 175.6 19.1 0 526 24 144.8 217.5 124.0 207.4 205.8 154.1 NuTech/G2 Gen SH-502^ HX,RR2 MQ,P5V 102 175.5 18.8 0 527 21 156.9 218.1 126.0 202.7 178.5 170.0 Titan Pro TP 39-02 SS STX,B AC,P5V 102 174.8 17.5 0 531 13 160.4 194.9 138.0 199.0 163.8 Channel 201-39STXRIB STX,B AC,P5V 101 174.7																
Renk RK605SSTX STX AC,P2 100 175.7 17.5 0 534 12 160.2 193.6 130.1 207.3 190.9 171.8 Dyna-Gro D41SS71 STX AC,P5V 101 175.6 19.1 0 526 24 144.8 217.5 124.0 207.4 205.8 154.1 NUTech/G2 Gen 5H-502^ HX,RR2 MQ,P5V 102 174.8 17.5 0 531 13 160.4 194.9 138.0 199.0 192.9 163.8 Channel 201-39STXRIB STX,B AC,P5V 101 174.7 17.5 0 531 14 148.1 199.7 131.0 208.8 196.7 164.1 Gold Country 99-52RSS STX,B AC,P5V 99 174.7 17.5 0 531 15 157.0 212.6 135.2 203.2 185.7 154.4 Golden Harvest G01P52-3011A 3011A AVC,C5 1																
NuTech/G2 Gen 5H-502^ HX,RR2 MO,P5V 102 175.5 18.8 0 527 21 156.9 218.1 126.6 202.7 178.5 170.0 Titan Pro TP 39-02 SS STX,B AC,P5V 102 174.8 17.5 0 531 13 160.4 194.9 138.0 199.0 192.9 163.8 Channel 201-39STXRIB STX,B AC,P5V 101 174.7 17.5 0 531 14 148.1 199.7 131.0 208.8 196.7 164.1 Gold Country 99-52RSS STX,B AC,P5V 99 174.7 17.5 0 531 15 157.0 212.6 135.2 203.2 185.7 154.4 Gold Country 99-52RSS STX,B AC,P5V 99 174.5 18.3 0 527 22 158.3 201.4 199.3 191.1 177.5 Dahlman RS51-313SSRIB STX,B AC,P5V 102			STX	AC,P2		175.7							130.1	207.3		
Titan Pro TP 39-02 SS STX,B AC,P5V 102 174.8 17.5 0 531 13 160.4 194.9 138.0 199.0 192.9 163.8 Channel 201-39STXRIB STX,B AC,P5V 101 174.7 17.5 0 531 14 148.1 199.7 131.0 208.8 196.7 164.1 Gold Country 99-52RSS STX,B AC,P5V 99 174.7 17.5 0 531 15 157.0 212.6 135.2 203.2 185.7 154.4 Golden Harvest G01P52-3011A 3011A AVC,C5 101 174.5 18.3 0 527 22 158.3 201.4 119.4 199.3 191.1 177.5 Dahlman R51-313SSRIB STX,B AC,P2 102 173.5 17.6 0 527 23 154.0 188.6 131.8 200.0 199.8 167.0 Channel 199-29STXRIB STX,B AC,P5V 99 173.3 17.1 0 528 19 141.4 220.1 132.1 198.1 185.6 162.4 Titan Pro 1M02-SS STX,B AC,P5V 102 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 172.5 18.7 0 519 28 151.3 203.0 127.4 198.6 195.2 159.5 Renk RK591DC5222A 5222,A CM,C2 99 171.4 17.3 0 521 26 141.6 186.3 142.8 203.6 190.7 163.4 Wensman W 7320VT3PRIB VT3P,B AC,P5V 101 170.9 18.6 0 514 30 154.4 201.5 121.2 203.1 190.3 154.8 Nuseed 9904VT2P VT2P AC,P2 99 170.7 18.3 0 515 29 149.8 194.5 135.0 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 515 29 149.8 194.5 135.0 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 516 159 150.8 202.2 127.6 198.9 193.2 163.2 LSD (0.10) =																
Channel 201-39STXRIB STX,B AC,P5V 101 174.7 17.5 0 531 14 148.1 199.7 131.0 208.8 196.7 164.1 Gold Country 99-52RSS STX,B AC,P5V 99 174.7 17.5 0 531 15 157.0 212.6 135.2 203.2 185.7 154.4 Golden Harvest G01P52-3011A 3011A AVC,C5 101 174.5 18.3 0 527 22 158.3 201.4 119.4 199.3 191.1 177.5 Dahlman RS1-313SSRIB STX,B AC,P2 102 173.5 17.6 0 527 23 154.0 188.6 131.8 200.0 199.8 167.0 Channel 199-29STXRIB STX,B AC,P5V 192 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 162.4 Titan Pro 1M02-SS STX,B AC,P5V 102																
Golden Harvest G01P52-3011A 3011A AVC,C5 101 174.5 18.3 0 527 22 158.3 201.4 119.4 199.3 191.1 177.5 Dahlman R51-313SSRIB STX,B AC,P2 102 173.5 17.6 0 527 23 154.0 188.6 131.8 200.0 199.8 167.0 Channel 199-29STXRIB STX,B AC,P5V 99 173.3 17.1 0 528 19 141.4 220.1 132.1 198.1 185.6 162.4 Titan Pro 1M02-SS STX,B AC,P5V 102 173.3 18.9 0 520 27 161.3 201.0 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 172.5 18.7 0 519 28 151.3 203.0 127.4 198.6 195.2 159.5 170.1 LG Seeds LG5502STX STX AC,																
Dahlman R51-313SSRIB STX,B AC,P2 102 173.5 17.6 0 527 23 154.0 188.6 131.8 200.0 199.8 167.0 Channel 199-29STXRIB STX,B AC,P5V 99 173.3 17.1 0 528 19 141.4 220.1 132.1 198.1 185.6 162.4 Titan Pro 1M02-SS STX,B AC,P5V 102 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 172.5 18.7 0 519 28 151.3 203.0 127.4 198.6 195.2 159.5 Renk RK691DC5222A 5222,A CM,C2 99 171.4 17.3 0 521 26 141.6 186.3 142.8 203.6 190.7 163.4 Wensman W 7320VT3PRIB VT3P,B AC,P5V 91 <td></td>																
Channel 199-29STXRIB STX,B AC,P5V 99 173.3 17.1 0 528 19 141.4 220.1 132.1 198.1 185.6 162.4 Titan Pro 1M02-SS STX,B AC,P5V 102 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 172.5 18.7 0 519 28 151.3 203.0 127.4 198.6 195.2 159.5 Renk RK591DC5222A 5222,A CM,C2 99 171.4 17.3 0 521 26 141.6 186.3 142.8 203.6 190.7 163.4 Wensman W 7320VT3PRIB VT3P,B AC,P5V 101 170.9 18.6 0 514 30 154.4 201.5 121.2 203.6 190.7 163.4 Nuseed 9904VT2P VT2P AC,P2 99																
Titan Pro 1M02-SS STX,B AC,P5V 102 173.3 18.9 0 520 27 161.3 201.8 122.5 198.6 185.5 170.1 LG Seeds LG5502STX STX AC,P5V 102 172.5 18.7 0 519 28 151.3 203.0 127.4 198.6 195.2 159.5 Renk RK591DC5222A 5222,A CM,C2 99 171.4 17.3 0 521 26 141.6 186.3 142.8 203.6 190.7 163.4 Wensman W 7320VT3PRIB VT3P,B AC,P5V 101 170.9 18.6 0 514 30 154.4 201.5 121.2 203.1 190.3 154.8 Nuseed 9904VT2P VT2P AC,P2 99 170.7 18.3 0 515 29 149.8 194.5 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
Renk RK591DC5222A 5222,A CM,C2 99 171.4 17.3 0 521 26 141.6 186.3 142.8 203.6 190.7 163.4 Wensman W 7320VT3PRIB VT3P,B AC,P5V 101 170.9 18.6 0 514 30 154.4 201.5 121.2 203.1 190.3 154.8 Nuseed 9904VT2P VT2P AC,P2 99 170.7 18.3 0 515 29 149.8 194.5 135.0 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 513 31 149.0 189.2 190.7 194.6 176.2 Dekalb DKC48-12RIB CK STX,B AC,P5V 98 177.9 16.3 0 546 5 159.6 201.5 140.8 202.3 197.4 166.0 Test Average 1 17.4 18.2 0 519 150.8																
Wensman W 7320VT3PRIB VT3P,B AC,P5V 101 170.9 18.6 0 514 30 154.4 201.5 121.2 203.1 190.3 154.8 Nuseed 9904VT2P VT2P AC,P2 99 170.7 18.3 0 515 29 149.8 194.5 135.0 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 513 31 149.0 189.2 112.4 200.7 194.6 176.2 Dekalb DKC48-12RIB CK STX,B AC,P5V 98 177.9 16.3 0 546 5 159.6 201.5 140.8 202.3 197.4 166.0 Test Average 1 172.0 18.2 0 519 150.8 202.2 127.6 198.9 183.2 LSD (0.10) = 8.6 0.8 1 16.4 19.1 17.4 15.0 16.6 15.9 <td></td>																
Nuseed 9904VT2P VT2P AC,P2 99 170.7 18.3 0 515 29 149.8 194.5 135.0 199.5 196.3 149.3 Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 513 31 149.0 189.2 112.4 200.7 194.6 176.2 Dekalb DKC48-12RIB CK STX,B AC,P5V 98 177.9 16.3 0 546 5 159.6 201.5 140.8 202.3 197.4 166.0 Test Average = LSD (0.10) = 8.6 0.8 1 16.4 19.1 17.4 15.0 16.6 15.9																
Anderson 588VT3P VT3P CE,C2 101 170.4 18.5 0 513 31 149.0 189.2 112.4 200.7 194.6 176.2 Dekalb DKC48-12RIB CK STX,B AC,P5V 98 177.9 16.3 0 546 5 159.6 201.5 140.8 202.3 197.4 166.0 Test Average = 172.0 18.2 0 519 150.8 202.2 127.6 198.9 189.2 163.2 LSD (0.10) = 8.6 0.8 1 16.4 19.1 17.4 15.0 16.6 15.9																
Test Average = 172.0 18.2 0 519 150.8 202.2 127.6 198.9 189.2 163.2 LSD (0.10) = 8.6 0.8 1 16.4 19.1 17.4 15.0 16.6 15.9	Anderson	588VT3P	VT3P	CE,C2	101	170.4	18.5	0	513	31	149.0	189.2	112.4	200.7	194.6	176.2
LSD (0.10) = 8.6 0.8 1 16.4 19.1 17.4 15.0 16.6 15.9		DKC48-12RIB CK	STX,B	AC,P5V	98					5	159.6					
	LSD (0.10) =					8.6	0.8	1			16.4	19.1	17.4	15.0		

Bold yields are significantly above test average. Italicized brands exceed the grain moisture limit for this test. ‡ = 2 replications, early-season test

Sponsored by LibertyLink from Bayer CropScience

15

Yield Range: 159.3-211.0 Yield Average: 181.7 Top \$ Per Acre: \$641.00

Corn Field Notes: Minnesota Southwest

Mark Querna, FIRST Manager

Easton—This site received a lot of rain in June as well as a hail event that severely damaged soybean fields. However, these tests did recover quite well. There was a 6% slope to this site, which really helped with drainage this year. The early-season test was located on the downward portion of the slope, with the full-season test located uphill from it. Yields were higher on the higher-slope, full-season test, averaging 6.9 bu. per acre more than the early-season, lower-slope test.

Jackson—At this site, the soil profile was fully charged for a May 7 planting date, and June rains were plentiful. The weather turned drier in July and August, and temperatures were moderate. Plants stood quite well here, and grain moistures dropped quite a bit because of nice weather in October. The average yield here was 180.3 bu. per acre in the early-season test and 177.3 bu. per acre in the full-season test.

Jeffers—Excessive rain in late May and June caused saturation of the root zone at this level site.

Temperatures were moderate all summer and plants matured slowly. This site had dairy manure applied as part of the fertility program, and FIRST farmer member Rick Quade was worried that some denitrification took place because of the rainfall in early summer. However, stalks stood well here at harvest.

Lake Crystal—This corn-on-corn site was planted late because of persistent rains. June was very wet, but FIRST farmer member Tim Fineran said that there were no rains heavier than half an inch from late June through late August. This site has a natural 1% slope for surface drainage, but small depressions caused tremendous yield drops at harvest. Frost on Sept. 13 hit this area hard. Yields were in line with Tim's other corn-on-corn vields. Corn after soybeans has been yielding about 165 bu. per acre. This area saw high yield variability. The early-season test results were rejected because of high yield variation. The full-season test yields were uniform, with one replication discarded.

Redwood Falls—This is a tale of two tests: The early-season test was located on higher ground than the full-season test. The yield difference in these tests is attributed to the water saturation of the soil from excessive rains through June. These yield differences mirror what farmers have seen all across Minnesota this year: The best yields were on soils with higher elevations, while the lowest yields were in the lowest elevations.

Tracy—Planting conditions were excellent at the Tracy location. Over 11" of rain fell in June, including a 5" event on June 13–14, but July and August were below normal for moisture. This site has been cornon-corn for four years, as FIRST farmer member Brian Hicks does not grow many soybean acres. He was pleased with his early corn yields, with continuous corn acres yielding 185 bu. per acre at 21% moisture. His later-maturing corn was wetter, as was the norm this year. This field has received lime in each of the past two years.

Site Information							2	014 Rair	nfall (inch	ies)	
Minnesota Souti	nwest						Mon	thly		Vs. 30-yea	ar avg.
Site	Soil Texture	Tillage	Prev. Crop	Units N	Planted	Мау	June	July	August	July	August
Easton	clay loam	conventional	soybean	140	5/7	2.31	8.36	1.62	4.62	-2.81	0.02
Jackson	clay loam	conventional	soybean	140	5/7	3.79	15.25	6.41	5.65	2.63	1.61
Jeffers	clay loam	conventional	soybean	190	5/6	3.10	10.25	3.52	4.92	-0.53	1.40
Lake Crystal	clay loam	conventional	corn	181	5/20	4.69	8.63	1.23	2.76	-3.09	-1.42
Redwood Falls	clay loam	conventional	soybean	175	5/6	3.12	9.06	2.33	3.98	-1.31	0.32
Tracy*	silty clay loam	conventional	corn, 2+ yr	160	5/6	2.10*	11.14	1.40*	2.3*	-1.77	-0.87

FIRST Minnesota Southwest Corn Results

EARLY-SEASO	N TEST 96-101 Day	CRM											Top 30	of 63 to	ested
Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Easton	Jackson	Jeffers	Lake Crystal #	Redwood Falls	Tracy‡
Channel LG Seeds	197-68STXRIB LG5499STXRIB	STX,B STX,B	AC,P5V AC,P5V	97 100	211.0 207.2	17.4 18.2	0	641 626	1 2	195.4 199.8	209.5 196.9	192.4 199.2	142.2 104.1	219.8 206.5	238.0 233.8
Gold Country	98-38RSS	STX,B	AC,P5V	98	200.0	16.4	0	613	3	189.2	182.2	190.8	110.8	203.2	234.7
Titan Pro Rob-See-Co	TP 31-01 3011A Innotech IC5112^	3011A 3011A	AVC,C2 CM,C2	101 101	197.7 196.9	17.3 17.3	0 1	602 599	5 8	192.8 183.7	189.1 193.4	186.4 181.2	142.5 87.9	191.4 197.1	228.9 228.9
LG Seeds	LG5470STXRIB	STX,B	AC,P5V	98	196.8	16.9	1	601	6	188.5	185.2	182.1	86.1	205.5	222.7
Channel Latham	199-29STXRIB LH4955VT2PRORIB	STX,B VT2P,B	AC,P5V AC,P5V	99 99	196.5 195.9	15.6 16.3	0 0	606 601	4 7	184.6 183.3	206.0 184.1	185.3 181.8	100.5 119.4	191.3 197.8	215.3 232.7
Renk	RK605SSTX	STX	AC,P2	100	195.7	16.5	0	599	9	180.6	178.9	185.9	107.0	203.5	229.7
Dyna-Gro Gold Country	D41SS71 99-52RSS	STX STX,B	AC,P5V AC,P5V	101 99	195.7 194.9	17.6 16.4	0	594 597	14 11	167.3 191.5	191.1 177.8	193.3 191.7	115.2 119.9	200.0 190.4	226.6 223.3
Titan Pro	TP 39-00 SS	STX,B	AC,P5V	100	193.9	15.9	0	597	12	190.8	180.0	180.0	97.1	197.1	221.8
Dyna-Gro Wensman	D39VP14 W 91011STXRIB	VT3P STX,B	AC,P5V AC,P5V	99 101	193.9 193.7	16.5 17.3	0 0	594 589	15 21	190.2 173.1	194.2 188.7	184.6 181.5	144.3 117.1	188.5 200.6	211.9 224.6
Viking	T51-01R	GT,B	CM,C2	101	193.5	16.3	0	594	16	190.5	173.5	178.0	100.1	212.0	213.6
Wensman Wyffels	W 70975VT3PRIB W2308	VT3P,B STX	AC,P5V AC,P5V	97 100	193.1 193.0	15.1 16.7	0	598 590	10_ 19	183.0 185.1	184.0 182.9	183.1 184.6	112.0 114.6	195.5 194.3	220.0 217.9
Renk	RK591DC5222A	5222,A	CM,C2	99	192.9	15.4	0	596	13	193.5	184.4	178.8	111.1	193.5	214.2
Latham Renk	LH4859SSRIB RK596SSTX	STX,B STX	AC,P5V AC,P2	98 98	192.5 191.8	15.8 15.8	0 0	593 591	17 18	189.4 180.5	177.0 186.8	178.6 169.2	100.3 108.0	199.4 203.1	218.2 219.5
Pfister	1740SS	STX	AC,P5	98	190.9	16.6	2	584	23	204.4	180.8	171.6	105.0	188.6	209.3
Wensman Rob-See-Co	W 9288STXRIB Innotech IC4903^	STX,B 3111A	AC,P5V CM,C2	98 99	190.5 190.2	17.1 16.0	0	581 585	25 22	175.3 183.7	184.7 176.9	178.6 186.5	144.8 110.5	199.6 199.3	214.1 204.5
LG Seeds	LG5460STX	STX	AC,P5V	97	189.4	16.2	0	581	26	158.1	185.5	181.6	100.2	195.4	226.3
Gold Country Wyffels	97-65RSS W1818	STX,B STX	AC,P5V AC,P5V	97 97	189.0 188.9	16.0 16.4	0	581 579	27 29	179.2 178.8	182.7 182.1	187.3 169.8	85.1 89.9	195.5 199.2	200.3 214.4
Wensman	W 90979STX	STX	AC,P5V AC,P5V	97	188.8	16.4	0	579	30	170.0	179.4	177.5	94.7	205.1	212.1
Wyffels	W1698RIB	STX,B	AC,P5V	97	187.8	15.1	0	582	24	164.7	186.7	183.8	125.1	195.8	208.0
NuTech/G2 Gen NuTech/G2 Gen	5Y-196^ 5F-198^	OIX AM,B	MQ,P1V,R MQ,P5V	96 98	187.2 186.4	14.7 14.4	0	580 578	28 31	184.6 198.9	178.9 173.9	169.6 169.7	125.3 140.5	188.2 181.9	214.9 207.4
Dekalb	DKC53-56RIB CK	STX,B	AC,P5V	103	194.8	18.1	1	589	20	183.5	184.2	193.0	128.5	202.5	210.8
Test Average = LSD (0.10) =					187.3 9.3	16.3 0.7	2	574		179.8 14.9	180.3 15.5	176.5 14.2	109.7 34.7	190.9 15.3	209.0 14.9
FULL-SEASON	TEST 102-105 Day	CRM											Top 30	of 48	tested
Gold Country	105-49RSS	STX,B	AC,P5V	105	192.7	17.7	0	584	1	201.3	194.8	202.5	163.5	173.1	220.7
<u>Latham</u> Dekalb	LH5509SSRIB DKC54-38RIB GC	STX,B STX,B	AC,P5V AC,P5V	105 104	188.5 187.8	19.4 18.8	0	564 564	3	198.8 204.2	176.3 191.7	194.9 190.7	171.0 163.9	172.1 162.8	217.6 213.2
Wensman	W 9325STXRIB	STX,B	AC,P5V	102	185.7	18.2	0	561	4	194.9	181.3	199.6	163.6	162.9	211.7
Renk Titan Pro	RK752SSTX 2M04-2P	STX,B VT2P,B	AC,P2 AC,P2	105 104	185.2 185.1	20.8 19.3	1 0	547 554	11 7	203.0 188.1	182.1 202.5	193.3 202.0	153.7 137.0	166.1 170.4	213.1 210.3
Wensman	W 91051STX	STX	AC,P5V	105	184.5	18.5	0	556	5	206.1	186.5	186.0	157.9	152.2	218.5
Gold Country Wyffels	102-88RSS W3358	STX,B STX	AC,P5V AC,P5V	102	182.8 182.3	17.5 17.6	0	555 553	6 8	178.9 189.1	184.4 195.1	192.4 188.8	158.3 145.5	174.8 160.7	208.0 214.6
LG Seeds	LG5502STX	STX	AC,P5V	103	181.5	17.5	0	551	9	181.1		195.1	144.2	161.2	229.1
Channel LG Seeds	203-44STXRIB LG5523STX	STX,B STX	AC,P5V AC,P5V	103	180.2 180.1	18.0 18.3	0	545 543	13 14	186.0 202.5	180.8 187.2	189.7 179.0	145.9 153.6	168.9 151.2	209.7 206.9
Latham	LH5215VT2PR0RIB	VT2P,B	AC,P2	105 102	179.5	20.3	0	533	21	176.5	178.2	204.4	158.5	177.5	181.9
Viking	C78-05R	VT3P,B	AC,P2	105	178.6	16.2	1	548	10	185.0	173.7	202.6	146.9	162.2	201.1
Pfister Titan Pro	2399GT3000 1M02-SS	3000GT STX,B	CM,C2 AC,P5V	104 102	178.3 178.0	17.1 18.6	3 0	543 536	15 19	210.6 187.1	177.0 185.1	185.2 184.8	138.5 139.4	151.2 156.6	207.0 215.1
NuTech/G2 Gen	5H-502^	HX,RR2	MQ,P5V	102	177.8	18.2	0	537	18	178.6	184.0	198.6	155.1	142.1	208.6
Dairyland Titan Pro	DS6805 TP 39-05 SS	STX STX,B	CM,C2 AC,P5V	105 105	177.6 177.5	18.5 20.1	1 0	535 528	20 26	191.3 193.4	174.2 187.6	179.2 178.1	160.3 129.6	148.4 172.2	212.2
Prairie Brand	5624GT	GT	CM,C2	105	177.4	17.3	5	540	16	210.3	177.9	173.7	139.4	161.4	201.4
Curry Renk	422-09CHR RK629VT3P	OT VT3P,B	MQ,P1V,R AC,P2	102 101	176.8 176.4	19.1 16.9	0 0	530 538	22 17	194.7 191.7	178.9 188.5	189.0 173.9	126.3 152.8	155.5 157.2	216.4 194.1
Renk	RK699SSTX	STX,B	AC,P2	105	176.1	18.9	0	529	23	191.9	175.2	188.5	147.5	161.5	191.8
Pfister Channel	2225RA 202-64STXRIB	STX,B STX,B	CM,C2 AC,P5V	102 102	174.5 174.3	18.3 17.6	0	527 529	28 24	175.6 183.6	167.8 186.7	182.9 187.9	155.9 143.0	147.5 142.8	217.2 201.7
Wyffels	W3998RIB	STX,B	AC,P5V	105	173.9	17.4	0	529	25	192.4	180.1	171.7	149.2	158.1	191.6
LG Seeds	LG5518STXRIB	STX,B	AC,P5V	104	173.8	17.4	0	528 524	27	183.0	165.9	173.5	165.0	145.2	210.3
Titan Pro TA Seeds	TP 39-02 SS TA524-22DPRIB	STX,B VT2P,B	AC,P5V CM,C2	102 102	171.8 170.7	16.9 15.8	0	524 526	30 29	181.6 171.7	180.3 173.1	178.6 178.4	137.3 155.5	151.7 154.6	201.3 190.6
Channel	203-88STXRIB	STX,B	AC,P5V	103	170.7	16.2	0	524	31	185.5	164.0	166.6	137.5	161.5	209.2
Dekalb Test Average =	DKC53-56RIB CK	STX,B	AC,P5V	103	180.3 176.0	17.9 18.3	0	546 531	12	190.1 186.7	178.8 177.3	195.8 183.8	147.6 147.6	159.3 156.4	210.2 203.8
LSD (0.10) =	gnificantly above test av	orago + _ 2 .	raplications carl	v. 0000	8.8	1.0	1		coccon	16.1	15.1	12.0	19.2	17.0	21.3

PONCHO®/VOTIVO®

Applied on more than 14 million acres of corn already, Poncho*/VOTiVO* seed treatment from Bayer CropScience helps farmers achieve higher levels of production by using a systemic agent that helps protect the whole plant against insect pests. Poncho/VOTiVO also uses a biological component that protects against nematodes during early development, leading to healthier stands and larger yields. So get treated and get growing. For more information, contact your Seed Dealer or Bayer CropScience Representative, or visit ponchovotivo.us.

NOW AVAILABLE FOR CORN, COTTON AND SOYBEANS.

Bayer CropScience LP, 2 TW Alexander Drive, Research Triangle Park, NC 27709. Always read and follow label instructions. Bayer, the Bayer Cross, Poncho, and VOTiVO are registered trademarks of Bayer. Poncho/VOTiVO is not registered in all states. For additional product information, call toll-free 1-866-99-BAYER (1-866-992-2937) or visit our website at www.BayerCropScience.us.

Yield Range: 177.0-226.1 Yield Average: 201.0 Top \$ Per Acre: \$672.00

Corn Field Notes: Minnesota Southeast

Mark Querna, FIRST Manager

Cannon Falls—Planting was delayed by wet soils here, but emergence was excellent. June was incredibly wet, and below-normal temperatures caused heat units to be less than average all season. In spite of these challenges, this site yielded very well. FIRST farmer member Marc Hernke reports that yields ranged from about 185 to 205 bu. per acre, and grain moistures finally dropped thanks to the warm and dry weather that arrived in October.

Dexter—A wet spring delayed planting here, but conditions were quite good when it was finally in the ground. A wet June saturated this site. July and August were drier and an early frost on Sept. 13 lowered the yield potential of hybrids that were not yet black layered. There was also a hail event here in September, but damage to the plants at this site was quite minimal. FIRST farmer member Eric Lee reported just 6% damage to some corn fields but up to 25% damage to soybean fields. Test weights were variable

here, but Lee said that most hybrids were 54 lbs. or more.

Eyota—A wet spring delayed field work here. Early-season growth was slowed by cooler-than-normal temperatures and wet weather through June, and saturated soils increased variability across this site. Heat units were less than normal. Yields finished quite well, but an early frost on Sept. 13 prevented full-season hybrids from maximizing yield. The full-season test was located downslope on this good soil, but these more saturated soils also contributed to lower average yields in that test.

Kasson—A wet spring delayed field work, but conditions were quite good at planting. The 9" of rain that fell in June hampered root development. July brought only 2.2" of rain, but temperatures were moderate at pollination. In August, 6" of rain fed these shallow-rooted plants. FIRST farmer member Brian Herbst believes the plants ran out of nitrogen because of the continued rains all summer. A hard frost on

Sept. 13 cut the yield potential of the late-season products.

Madison Lake—Rain delayed planting this year, and it stayed quite wet through June. FIRST farmer member Mike Krenik recorded 9.94" of rain in June. Temperatures were moderate all summer, but enough rain fell in July and August to allow these shallow-rooted plants to yield quite well. Plant lodging was a very minor issue. The third replication was lost because of combine harvesting issues.

New Richland—This site was planted on an east-facing 3% slope, and the full-season test was located on the lower portion of that slope. The yield results are lower in the full-season test, reflecting the saturated soils of June and early July. The grain moistures are also lower than anticipated in the late-season hybrids. A spotty frost on Sept. 13 may have been a contributing factor. The tests here are representative of other fields in the area, with the higher, better-drained ground producing better yields than lower areas.

Site Information							2	014 Rair	nfall (inch	ies)	
Minnesota South	neast						Mon	thly		Vs. 30-ye	ar avg.
Site	Soil Texture	Tillage	Prev. Crop	Units N	Planted	Мау	June	July	August	July	August
Cannon Falls	silty clay loam	conventional	corn	210	5/18	4.29	10.35	2.24	4.87	-1.57	0.23
Dexter	silt loam	minimum	soybean	140	5/17	4.50	15.19	7.91	7.31	3.12	2.33
Eyota	silt loam	minimum	soybean	150	5/10	2.85	10.64	1.60	6.17	-2.88	1.42
Kasson	silt loam	minimum	soybean	178	5/18	5.03	8.96	2.15	6.05	-2.29	1.24
Madison Lake*	clay loam	conventional	soybean	130	5/18	2.70	9.94	1.71	3.51	-2.61	-0.67
New Richland	clay loam	conventional	soybean	150	5/5	3.39	12.76	2.29	5.29	-2.13	0.54

FIRST Minnesota Southeast Corn Results

EARLY-SEASO	N TEST 95-100 Day	CRM											Top 30	of 63 to	ested
Company/ Brand	Product/ Brand	Technology	Seed Treatment	Relative Maturity	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Gross Income Rank	Cannon Falls	Dexter	Eyota	Kasson	Madison Lake‡	New Richland
LG Seeds	LG5499STXRIB	STX,B	AC,P5V	100	226.1	20.2	0	672	1	219.8	220.5	244.4	237.0	242.1	192.8
Channel Wyffels	197-68STXRIB W1698RIB	STX,B STX,B	AC,P5V AC,P5V	97 97	223.3 218.0	18.7 17.8	0	672 661	2 5	211.8 205.6	220.9 216.1	227.7	245.3 231.9	225.3 217.0	208.9 199.3
AgriGold	A6257STXRIB	STX,B	AC,P5V	100	217.8	18.7	0	655	7	212.3	212.7	224.6	235.6	225.9	195.4
LG Seeds Dahlman	LG5470STXRIB	STX,B VT3P,B	AC,P5V	98 94	217.3 217.1	18.4 16.9	0 0	655 663	8	209.6 211.2	220.3 207.5	228.8 239.7	232.5 224.9	220.0 210.9	192.4 208.2
Channel	R47-35VT3PRIB 199-29STXRIB	STX,B	AC,P2 AC,P5V	99	216.5	17.6	0	657	6	203.4	219.7	235.8	232.1	212.4	195.7
Gold Country	95-33R3P	VT3P,B	AC,P5V	95	215.6	16.2	0	662	4	209.0	213.8	232.6	235.2	218.1	184.6
Wensman	W 70975VT3PRIB W 9288STXRIB	VT3P,B	AC,P5V	97 98	215.0 215.0	17.2 18.4	0 0	655 648	9 13	211.8 198.3	218.5 215.0	240.5 232.1	218.4 226.4	205.8 231.6	194.7 186.6
Wensman Channel	196-77STXRIB	STX,B STX,B	AC,P5V AC,P5V	96	213.8	17.6	0	649	11	211.4	196.0	238.6	229.2	219.2	188.4
Gold Country	98-38RSS	STX,B	AC,P5V	98	212.9	17.8	0	645	14	202.1	211.2	246.1	240.6	200.8	176.4
Dyna-Gro	D37SS60 P9917 GC	STX None	AC,P5V MQ,C2	97 99	212.5 212.3	17.7 16.5	1 1	644 650	15 10	195.0 192.3	218.9 212.2	223.3 228.0	244.5 231.2	196.8 211.2	196.3 199.0
Pioneer Viking	51-95N	None	CM,C2	95	211.8	16.4	0	649	12	203.7	212.4	221.6	220.6	207.4	205.0
Titan Pro	TP 39-00 SS	STX,B	AC,P5V	100	210.6	17.7	0	639	17	210.3	192.1	226.4	224.8	218.0	192.1
AgriGold Dekalb	A6217STX DKC48-12RIB GC	STX STX,B	AC,P5V AC,P5V	97 98	210.5 210.3	18.0 17.1	0 0	637 641	18 16	202.7 202.9	202.3 219.3	229.8 217.1	233.6 227.2	210.4 212.4	184.4 182.8
Rob-See-Co	Innotech IC4903^	3111A	CM,C2	99	210.3	18.0	0	636	19	204.3	216.3	213.4	225.5	211.7	189.8
Wyffels	W2308	STX	AC,P5V	100	209.9	18.3	11	633	25	202.6	205.7	240.6	225.0	204.2	181.0
Renk	RK605SSTX D39VP14	STX	AC,P2 AC,P5V	100 99	209.8 209.3	17.7	0 0	636	20 28	191.8	204.3	211.6	239.5 229.1	216.5	194.8
Dyna-Gro Wensman	W 90979STX	VT3P STX	AC,P5V AC,P5V	99	209.3	18.4 17.5	1	631 635	23	198.7 204.9	204.8	220.0 212.4	232.9	221.3	181.7 194.2
LG Seeds	LG5460STX	STX	AC,P5V	97	208.9	17.3	0	636	21	207.5	208.3	215.2	233.2	191.2	197.7
NuTech	5V-195	3111	CM,C2	95	207.7	16.5	0	636	22	193.7	202.2	217.8	220.4	220.4	191.6
Titan Pro Rob-See-Co	TP 30-99 Innotech IC4654^	None 3111	CM,C2 CM,C2	99 96	207.5	17.4 16.8	0	631 631	29 30	187.8 185.6	207.8	226.3 217.5	232.8	193.8 202.7	196.5 196.6
NuTech/G2 Gen	5Y-196^	OIX	MQ,P1V,R	96	204.4	16.2	1	628	24	196.6	204.2	223.4	215.4	195.6	191.2
Gold Country	99-52RSS	STX,B	AC,P5V	99	203.9	18.0	0	617	26	188.9	215.3	216.2	218.2	198.0	186.9
Renk Dekalb	RK568VT3P DKC49-29RIB CK	VT3P,B STX,B	AC,P2 AC,P5V	95 99	203.8	17.2 17.8	0	621	27 49	202.9 209.4	212.4 199.1	211.0	225.3	188.4	182.6 183.3
Test Average =	DRG49-29NID GR	317,0	AG,F3V	99	205.3	17.6	1	623	49	193.9	204.8	219.8	223.0	203.8	186.2
LSD (0.10) =					9.0	0.7	ns			12.1	15.8	19.4	13.2	22.7	14.9
FULL-SEASON	TEST 101-104 Day	CRM											Top 30	of 63	tested
Latham	LH5215VT2PRORIB	VT2P,B	AC,P2	102	212.7	20.6	1	630	2	199.1	226.7	198.0	233.1	224.8	194.7
Channel AgriGold	201-39STXRIB A6267STXRIB	STX,B STX,B	AC,P5V AC,P5V	101 102	211.9 210.4	18.8 19.7	0	637 628	<u>1</u>	216.9 218.4	210.5 195.3	217.3 223.2	225.5 223.5	200.2	201.2 183.3
Wensman	W 9325STXRIB	STX,B	AC,P5V	102	209.4	20.4	0	621	5	217.0	208.1	196.1	223.9	220.6	190.6
Dekalb	DKC54-38RIB GC	STX,B	AC,P5V	104	207.1	19.9	0	617	10	216.9	233.1	182.5	215.0	209.3	185.9
Dekalb LG Seeds	DKC53-56RIB GC LG5502STX	STX,B STX	AC,P5V AC,P5V	103 102	207.0	18.3 18.6	0	625 620	4 6	212.7 176.0	212.1 219.1	217.4 201.6	211.3 226.1	218.8 209.7	169.4 202.6
Rob-See-Co	Innotech IC5112^	3011A	CM,C2	102	205.8	18.4	0	620	7	193.9	192.0	205.5	220.1	230.6	192.5
Wensman	W 7320VT3PRIB	VT3P,B	AC,P5V	101	205.7	19.2	0	616	12	210.7	207.0	192.5	223.3	211.2	189.5
NuTech/G2 Gen	5H-502^	HX,RR2	MQ,P5V CM,C2	102	205.3	18.6	0	618	8	179.9	204.5	202.4	227.4 226.8	223.5	194.1
Titan Pro Gold Country	TP 40-00 102-88RSS	None STX,B	AC,P5V	100 102	205.0 204.4	18.4 19.0	0 6	618 613	9 14	180.4 162.9	208.3 209.7	203.9 226.4	223.7	216.0 226.1	194.4 177.7
NuTech/G2 Gen	5F-200^	AM,AQ,B	MQ,P5V	100	203.8	17.9	1	617	11	184.0	194.2	207.3	214.2	238.1	184.8
Viking	57-01N	None	CM,C2	101	203.7	18.2	0	615	13	188.8	208.6	187.3	224.9	211.0	201.3
Titan Pro AgriGold	TP 40-03 A6300STX	None STX	CM,C2 AC,P5V	103 103	203.4 202.2	19.9 19.2	3 0	606 606	16 17	184.5 209.6	200.8 197.1	207.9 181.0	231.5 216.7	215.0 215.2	180.9 193.8
Wyffels	W3358	STX	AC,P5V	103	202.1	18.7	0	608	15	188.6	202.1	218.0	220.5	208.6	174.9
Wensman	W 91011STXRIB	STX,B	AC,P5V	101	201.6	19.0	0	605	18	211.8	199.3	204.8	210.9	204.3	178.4
Wensman Pfister	W 91051STX 2399GT3000	STX 3000GT	AC,P5V CM,C2	105 104	200.5 200.5	18.7 19.2	2 5	603 600	19 21	188.3 176.8	209.6 205.5	203.5 200.6	205.8 212.3	206.9 219.7	189.1 188.3
NK Brand	N49W-3000GT GC	3000GT	AVC,C5	102	200.1	18.5	0	603	20	182.5	197.3	202.4	217.9	211.9	188.3
Gold Country	105-49RSS	STX,B	AC,P5V	105	199.7	19.5	7	597	24	173.7	197.3	209.1	228.4	209.1	180.4
AgriGold Viking	A6351STX 72-04N	STX None	AC,P5V CM,C2	105 104	199.5 198.5	19.8 18.2	0 7	595 599	29 23	199.6 184.1	200.6 183.0	200.3 201.4	212.3 204.4	197.9 225.7	186.2 192.5
Channel	202-64STXRIB	STX,B	AC,P5V	102	198.5	18.1	1	600	22	177.9	208.1	194.2	216.2	211.1	182.6
Wyffels	W2888RIB	STX,B	AC,P5V	102	198.4	18.9	0	596	27	203.7	194.6	191.5	223.1	194.0	183.5
Renk	RK633SSTX	STX,B	AC,P2	101	197.7	18.4	0	596	28	188.3	193.5	204.2	223.5	204.3	172.2
Latham NuTech/G2 Gen	LH5466VT3PRORIB 5Z-002^	VT3P,B OI	AC,P2 MQ,P1V,R	104 102	197.3 197.1	18.0 18.4	3 0	597 594	26 31	173.8 174.6	196.6 215.6	190.2 189.6	206.1 216.7	222.2 204.4	195.0 181.4
Channel	203-88STXRIB	STX,B	AC,P5V	103	196.8	18.0	1	595	30	194.4	188.7	204.4	216.2	198.8	178.3
Dekalb	DKC49-29RIB CK	STX,B	AC,P5V	99	197.4	18.0	0	597	25	200.7	188.6	186.6	211.1	206.0	191.6
Test Average = LSD (0.10) =					196.7 11.0	19.0	2	590		186.6 12.7	197.4 21.0	194.7 22.6	213.0 13.4	206.5 25.8	181.8 20.6
Bold yields are si	gnificantly above test av	verage. ‡ = 2 re	plications, earl	y- and	full-seas	on tests	U			14.1	21.0	22.0	10.7	20.0	20.0

FIRST Red River Valley Central Soybean Results

Site Information					_		
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Casselton	loam	conventional	30	5/29	145.9	n/a	2.30
East Grand Forks	clay loam	conventional	30	5/22	145.5	n/a	1.24
Kragnes	clay	conventional	30	5/26	146.0	n/a	1.88
Thompson	clay loam	conventional	30	5/23	145.4	n/a	2.72

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Kevin Coey, FIRST Manager

Soybean Stats:

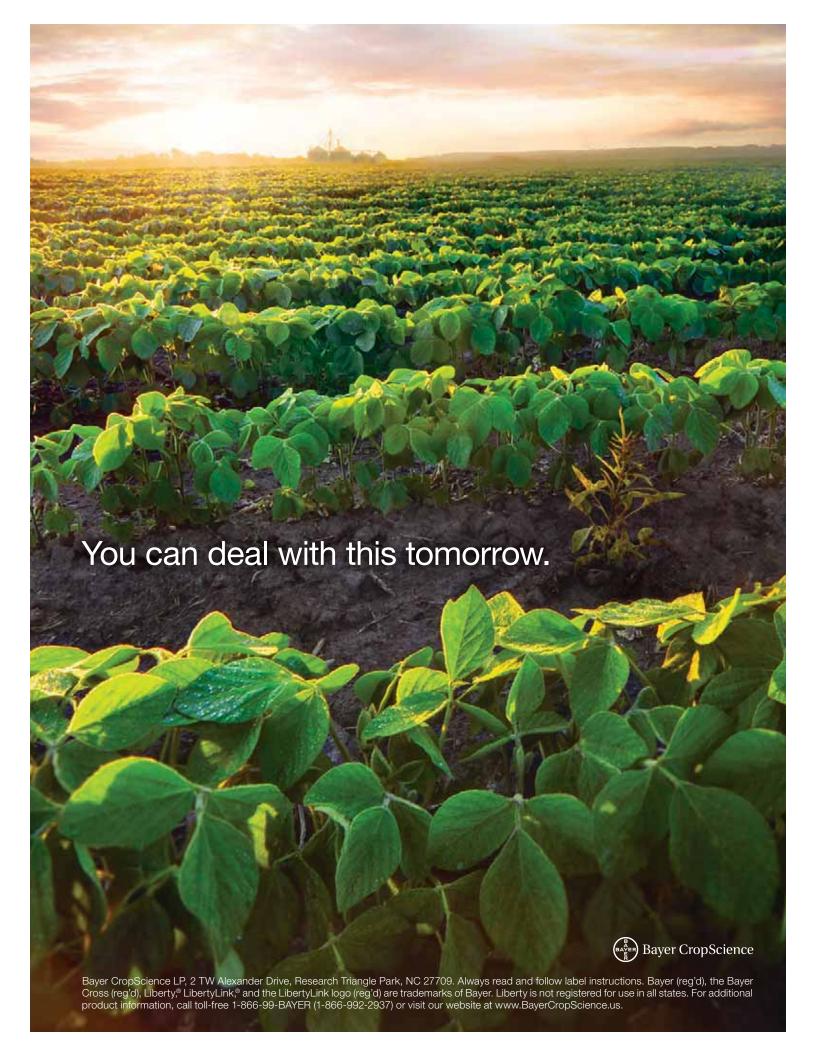
Yield Range: 27.6-47.5 Yield Average: 40.2 Top \$ Per Acre: \$428.00

Soybean Field Notes: Red River Valley Central

Casselton—This site had better-than-average results. Cold and wet conditions delayed planting. By late June, the crop was underdeveloped from drought, and FIRST farmer member Bob Runck said rain could still turn things around. Mid-August brought rain and vigorous plant growth. Stands were acceptable but less than ideal, in part because of seedling blight at the fourth trifoliolate leaf stage. Plant health was good and weed control was excellent. Plant height was average.

East Grand Forks—Results were good at this new site. FIRST farmer member Matt Krueger said the May 22 planting date was ideal. Timely rains fell. Parts of the site

were planted on the previous year's beet tailings, which produced some unexpected variability, but growing conditions were otherwise uniform. The soybean field adjacent to the site yielded just over 50 bu. per acre because of a greater soil moisture reserve. Overall, plant heights were average, plant health was good and weed control was excellent.


Kragnes—This site typifies the value of defensive varieties unique to this maturity group in difficult growing conditions. Cold, wet weather delayed planting. By mid-season, dry conditions began to hamper the crop. Mid-August rain brought a late-season flush of blooms and reasonable yields.

The surrounding field average was higher by 7 bu. per acre, which FIRST farmer member Curt Brendemuhl attributed to starter fertilizer, selecting a defensive variety and planting in narrow rows.

Thompson—This site produced lower yields than previous years. At harvest, plant stands and vigor were less than optimal. Plant health was only fair. Plant height varied, which made harvesting difficult. FIRST farmer member Charlie Nelson said 2014 was a better year for producing other crops in this area and that it was the earliest they ever finished. Conditions were dry this fall, making field work faster and easier.

0.0-0.7 Maturity	r Group									Top 2	0 of 72	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Casselton	East Grand Forks	Kragnes	Thompson
Dyna-Gro	S07RY45	RR2Y	0.7	R	CMBV	47.5	12.0	2	428	54.7	50.2	41.4	43.7
Dairyland	DSR-0404/R2Y	RR2Y	0.4	S	CMB	45.5	11.5	0	410	51.3	51.3	33.4	45.9
Wensman	W 3062NR2	RR2Y	0.6	MR	AC,PV	45.0	11.6	3	405	50.5	49.6	39.6	40.1
Latham	E0450R2	RR2Y	0.4	S	SS+	44.7	11.3	0	402	52.5	49.1	37.7	39.3
Renk	RS033R2	RR2Y	0.3	S	None	44.6	11.5	0	401	49.7	48.1	37.5	43.0
Hefty	H06R5	RR2Y	0.6	MR	DST	44.6	11.7	1	401	53.0	44.3	39.8	41.4
Pioneer	P07T50R §	RR	0.7	S	EE,G	44.2	11.3	0	398	45.5	49.9	39.4	42.1
NK Brand	S07-B6 §	RR2Y	0.7	S	CCB	44.1	11.5	1	397	50.9	49.7	34.3	41.6
Prairie Brand	PB-0863R2	RR2Y	8.0	R	CMBV	44.1	12.7	2	397	48.3	52.9	39.3	36.0
Mustang	06942 §	RR2Y	0.6	S	AC,PV	44.0	11.3	2	396	47.2	50.1	39.5	39.3
Prairie Brand	PB-0598R2	RR2Y	0.5	R	CMBV	43.8	11.8	1	394	50.2	47.2	35.9	41.9
Latham	L0648R2	RR2Y	0.6	R	CCB	43.8	11.7	2	394	48.7	42.4	43.2	41.0
Thunder	3406R2YN	RR2Y	0.6	R	CMB	43.6	11.7	1	392	52.6	47.8	34.4	39.5
Prairie Brand	PB-0777R2	RR2Y	0.7	R	CMBV	43.4	12.4	1	391	55.6	49.6	36.2	32.0
Dyna-Gro	S06RY24	RR2Y	0.6	R	CMBV	43.4	11.5	2	391	48.4	44.6	41.5	39.0
Asgrow	AG0333 §	RR2Y	0.3	S	ACi	43.3	11.5	0	390	48.6	51.3	36.8	36.3
Thunder	3303R2Y	RR2Y	0.3	S	CMB	43.3	11.7	0	390	52.1	45.5	36.4	39.0
Proseed	P2 11-50	RR2Y	0.5	S	CMB	43.3	11.4	6	390	51.8	42.9	38.2	40.4
Wensman	W 3032R2	RR2Y	0.4	S	AC,PV	43.2	11.5	0	389	49.3	47.8	35.1	40.7
Latham	L0485R2	RR2Y	0.4	R	CCB	43.2	11.6	1	389	51.9	48.2	34.7	37.8
Site Averages =						40.2	11.4	1	362	46.0	45.9	34.6	34.3
LSD (0.10) =						3.8	0.5	2		7.5	3.4	4.2	6.6

Results in **bold** are significantly above test average.

FIRST Red River Valley South Soybean Results

Site Information					-		
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Colfax	loamy sand	conventional	30	6/4	144.5	n/a	4.07
Great Bend	clay loam	conventional	30	5/27	150.3	n/a	3.49
Rothsay	sandy loam	conventional	30	6/24	143.6	n/a	2.86
Wheaton	clay loam	conventional	30	5/29	139.3	n/a	6.65

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Kevin Coey, FIRST Manager

Soybean Stats:

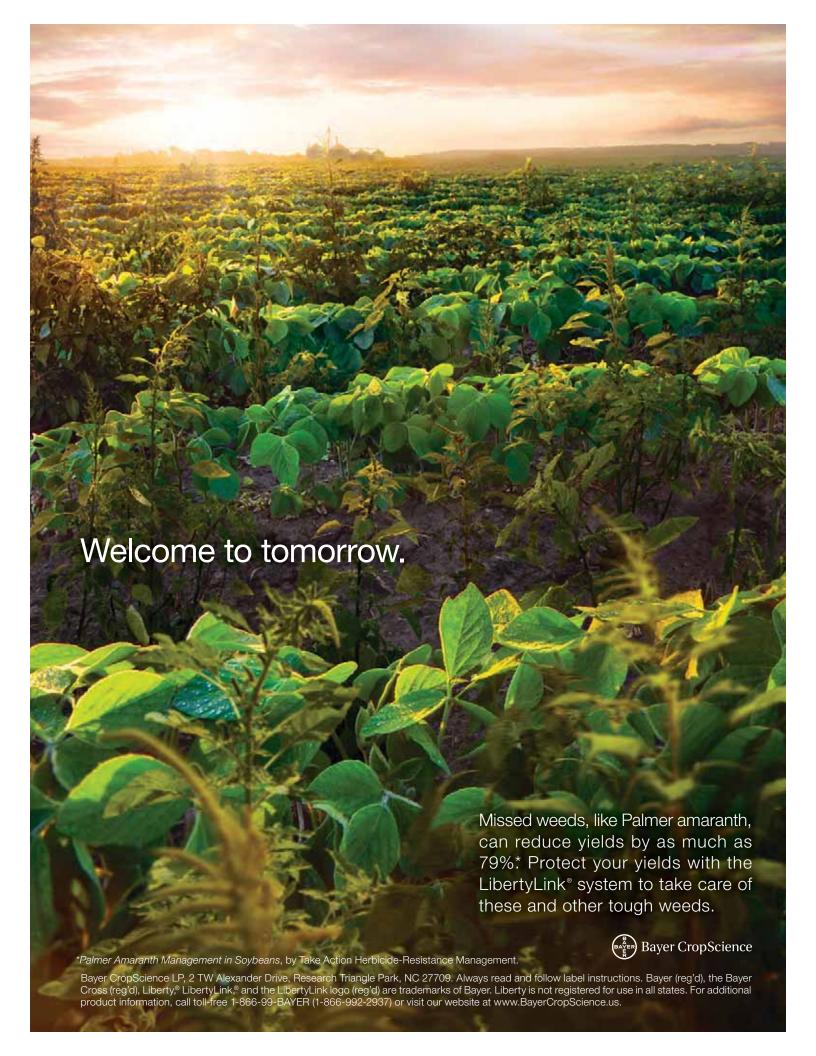
Yield Range: 29.0-42.9 Yield Average: 36.7 Top \$ Per Acre: \$386.00

Soybean Field Notes: Red River Valley South

Colfax—The Colfax site was planted late in the season, but after a nice emergence it suffered from a cold and wet period through most of June. The test was located on sandy soil that was recently tiled, but plant heights varied within and across varieties. FIRST farmer member Jay Myers mentioned that a small area of soybeans following soybeans in the surrounding field yielded very poorly and that plant health factored prominently in test results.

Great Bend—The Great Bend site was outstanding this year. Plant stands from emergence to harvest were very uniform. Weed control and plant health were

excellent. Soybean yields in the area have been very good. FIRST farmer member Jeff Leinen said, "while mid-summer was a little on the dry side, late August rains made a big difference in finishing out the crop. There were clusters of full pods on top of the plants that make a big difference." He also added that not all of his fields were quite that good.


Rothsay—Planting here was difficult to finish in fields without tile. The test was planted in late June, reducing the growing season. Plant heights for the fuller-season varieties reached 2 ft. or better, and plant health was generally good. A high fraction of sand may have

limited soil fertility but provided enough drainage to keep the crop from excessive water stress late in the summer. Yield levels produced a decent crop and revealed a few varieties that had not been competitive at the other tests sites in the Red River Valley South region.

Wheaton—The growing season at the Wheaton location began very wet following planting and resulted in poor stands in areas of the testing site. Some data was lost because of excessive weed pressure in these areas. Summer was dry until mid to late August. Plant heights were noticeably shorter than last year, and yields were lower by 8 to 10 bu. per acre.

0.5-1.2 Maturit	y Group									Top 2	0 of 72	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Colfax	Great Bend	Rothsay	Wheaton
Gold Country	1114	RR2Y	1.1	R	ACi	42.9	13.5	0	386	34.3	58.8	29.9	48.5
Hefty	H11R5	RR2Y	1.1	MR	DST	42.8	13.1	0	385	33.6	59.4	30.1	48.2
Channel	1108R2	RR2Y	1.1	R	ACi	42.8	13.4	0	385	36.2	55.0	29.6	50.5
NK Brand	S12-H2 §	RR2Y	1.2	R	CCB	42.3	13.2	0	381	38.8	61.8	20.4	48.3
Thunder	3511R2YN	RR2Y	1.1	R	CMB	42.0	13.3	0	378	36.5	55.6	25.5	50.2
Latham	L0982R2	RR2Y	0.9	MR	SS+	41.4	13.1	0	373	33.2	65.9	20.7	45.7
REA	R0815	RR2Y	8.0	R	ACi	40.9	12.9	0	368	32.4	60.1	23.6	47.4
Federal	F115NRR2Y	RR2Y	1.1	R	CCB	40.9	13.1	0	368	37.0	49.4	27.5	49.7
Dyna-Gro	S12RY44	RR2Y	1.2	R	CMBV	40.9	13.1	0	368	39.2	58.9	16.9	48.6
Asgrow	AG1234 §	RR2Y	1.2	R	ACi	40.8	13.0	0	367	38.8	56.2	22.8	45.4
Gold Country	943	RR2Y	0.9	MR	ACi	40.7	13.0	0	366	30.9	63.3	17.1	51.4
NorthStar	NS 1040NR2	RR2Y	0.9	R	CCB	39.9	13.1	0	359	27.8	54.9	30.5	46.2
Titan Pro	TP-11R33	RR2Y	1.1	R	CCB	39.7	12.7	0	357	35.6	54.0	19.5	49.5
REA	R1215	RR2Y	1.2	R	ACi	39.6	13.5	0	356	36.0	57.6	18.0	46.7
Wensman	W 3080NR2	RR2Y	8.0	R	AC,PV	39.5	12.9	0	356	38.7	54.9	16.1	48.3
Hefty	H09R4	RR2Y	0.9	R	DST	39.5	13.0	0	356	28.3	60.1	26.0	43.4
Proseed	P2 30-12	RR2Y	1.2	R	CMB	39.5	13.2	0	356	29.1	61.1	19.5	48.2
Renk	RS084NR2	RR2Y	8.0	R	CMB	39.3	12.9	0	354	33.2	59.0	16.1	48.8
REA	71G14	RR2Y	1.1	R	ACi	39.2	12.9	0	353	36.5	53.3	18.5	48.5
Dyna-Gro	S09RY64	RR2Y	0.9	R	CMBV	38.9	12.9	0	350	35.3	58.9	19.2	42.3
Site Averages =						36.7	12.9	0	331	28.1	55.1	18.8	44.9
LSD (0.10) =						4.9	0.6	6		7.1	5.9	5.2	5.4

Results in **bold** are significantly above test average.

FIRST South Dakota Northeast Soybean Results

Site information							
Site •	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Bath	silt loam	no-till	30	5/18	123.3	none	2.27
Clear Lake	silty clay loam	conventional	30	5/16	117.8	none	2.06
Watertown	silty clay loam	no-till	30	5/15	103.0	none	2.06
Webster	silty clay	no-till	30	5/20	110.4	none	3.05

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Mark Tollefson, FIRST Manager

Soybean Stats:

Yield Range: 45.4-60.8 Yield Average: 54.8 Top \$ Per Acre: \$547.00

Soybean Field Notes: South Dakota Northeast

Bath—This site had tall soybean plants with heights in the 36"–42" range. Strong winds caused lodging in some sections of the test. The 7.87" of rain that fell here in August definitely helped make this a really good yielding site. At harvest, the cornstalks that remained from planting time were tough, forcing us to raise the cutter bar on the combine to get through the test. The average yield at the Bath location was 61.6 bu. per acre.

Clear Lake— June rainfall was 3.2" above the 30-year average, which helped carry moisture through July and August, when rainfall was a combined 1.6" be-

low the 30-year average. This site had some weed pressure early, but the herbicide applications worked well, leaving only a few volunteer corn plants in the site at harvest. The soybean plants were waist high at harvest and the test looked excellent

Watertown—The Watertown site had a wet June because of the 6.3" of rain that fell during that month. Part of the test site had water ponding issues, which hurt plant vigor and yield. We removed this replication to improve yield consistency. Soybean plants in the test and the surrounding field were just over knee high at harvest. The soybeans in the grain tank seemed

to be larger than average. The harvest conditions were good with no weeds, despite the smaller soybean height.

Webster—The 6.07" of rain that was recorded in June resulted in a slow start for the Webster site. Some sections of the test never recovered from the saturated soils. The end result was the loss of one replication. The soybeans were in the 24" height range at harvest. We had mostly clean soybeans except for a few volunteer corn plants. We had large soybeans in our samples and I was a little surprised that the shorter-than-average beans yielded as well as they did.

1.0-1.7 Maturity G	roup									Top 2	0 of 72	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Bath	Clear Lake	Watertown‡	Webster‡
Dyna-Gro	SX14816R	RR2Y	1.6	R	CMBV	60.8	12.0	4	547	67.7	67.3	57.5	50.7
Latham	L1785R2	RR2Y	1.7	R	CCB	60.5	12.2	4	545	69.1	60.3	53.5	58.9
Latham	L1538R2	RR2Y	1.5	R	CCB	59.9	11.6	4	539	60.1	68.4	58.5	52.6
NK Brand	S17-B3 §	RR2Y	1.7	R	CCB	59.5	12.2	7	536	63.0	64.8	56.2	53.8
Dyna-Gro	S14RY95	RR2Y	1.4	R	CMBV	59.2	11.7	3	533	66.1	62.2	55.0	53.5
Latham	E1482R2	RR2Y	1.4	R	CCB	58.8	11.7	4	529	64.3	65.4	58.8	46.5
Wensman	W 3170NR2	RR2Y	1.7	R	AC,PV	58.8	12.4	4	529	72.5	59.9	53.1	49.6
Prairie Brand	PB-1794R2	RR2Y	1.7	R	CMBV	58.8	11.9	6	529	75.1	57.3	54.7	48.2
REA	75G12	RR2Y	1.5	R	ACi	58.6	11.9	5	527	66.2	65.7	52.3	50.0
Hefty	H17R4	RR2Y	1.7	S	DST	58.5	11.7	3	527	69.4	67.0	44.0	53.5
Hefty	H15R5	RR2Y	1.5	MR	DST	58.4	11.7	4	526	64.0	66.7	53.4	49.5
Renk	RS175NR2	RR2Y	1.7	R	None	58.3	12.6	6	525	69.7	56.8	55.1	51.7
Wensman	W 3160NR2	RR2Y	1.6	R	AC,PV	58.0	12.0	4	522	69.5	62.7	46.2	53.5
Wensman	W 3158NR2	RR2Y	1.5	R	AC,PV	57.8	11.6	4	520	61.2	66.7	52.5	50.7
Stine	10RD03 §	RR2Y	1.0	MR	None	57.7	11.5	4	519	57.8	61.6	54.9	56.4
REA	R1215	RR2Y	1.2	R	ACi	57.6	11.9	4	518	63.2	63.4	53.4	50.5
Wensman	W 3102NR2	RR2Y	1.0	R	AC,PV	57.5	11.8	4	518	67.2	66.2	48.0	48.6
Renk	RS145NR2	RR2Y	1.4	R	None	57.5	11.9	5	518	64.5	61.2	58.0	46.3
Thunder	3511R2YN	RR2Y	1.1	R	CMB	57.3	11.9	6	516	59.6	61.0	54.3	54.2
Dairyland	DSR-1515/R2Y	RR2Y	1.5	MR	CMB	56.9	11.4	3	512	58.8	64.6	50.9	53.4
Site Averages =						54.8	11.8	4	493	61.6	61.4	48.5	47.5
LSD (0.10) =						4.9	0.5	2		6.3	5.2	6.8	9.3

Results in **bold** are significantly above test average. $\ddagger = 2$ replications

Liberty

LIBERTY LINK

Liberty® today. Cleaner fields tomorrow.

With the LibertyLink® system, weeds are exposed to a different chemistry with a unique mode of action, letting you handle your toughest weeds while protecting your yield, your profit and the long-term success of your operation.

Learn more at BayerCropScience.us.

And now you can get up to \$14/acre back when you buy Liberty° and qualifying residuals with your LibertyLink soybean purchase. Talk to your retailer to find out more.

Bayer CropScience

Bayer CropScience LP, 2 TW Alexander Drive, Research Triangle Park, NC 27709. Always read and follow label instructions. Bayer (reg'd), the Bayer Cross (reg'd), Liberty, LibertyLink, and the LibertyLink logo (reg'd) are trademarks of Bayer. Liberty is not registered for use in all states. For additional product information, call toll-free 1-866-99-BAYER (1-866-992-2937) or visit our website at www.BayerCropScience.us.

FIRST South Dakota East Central Soybean Results

Site information							
Site •	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Cavour	loam	no-till	30	5/17	111.9	none	2.83
Colton	silty clay loam	conventional	30	5/21	119.9	none	2.92
Flandreau	clay loam	conventional	30	5/6	133.7	none	2.89
Howard	loam	no-till	30	5/27	114.4	none	2.44

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Mark Tollefson, FIRST Manager

Soybean Stats:

Yield Range: 47.8-60.2 Yield Average: 55.7 Top \$ Per Acre: \$542.00

Soybean Field Notes: South Dakota East Central

Cavour—This site, which was planted on May 17, was very dry and free of disease or weeds at harvest. For the first time, grain moistures were so low that we had some cracked beans in collected grain samples this year. Soybean height at harvest was up to about the middle of the thigh and was uniform throughout the test. We had good results with high data quality here. This was one of the better tests we have had over the years at Cavour, averaging 51.1 bu. per acre.

Colton—We had good conditions here when we started to harvest, but some rain fell when we were halfway done harvesting

the test. We waited for an hour after the rain stopped before we were able to complete the harvesting of the plots. After the shower, bean moisture went up about a point. This test has been very clean all year. The fuller-season varieties in the test remained green until a freeze hit the site just days before harvest.

Flandreau—This site is located on some low ground next to a creek. It was planted early, on May 6. On Sept. 14, a frost hit hard and we lost a lot of yield on the immature varieties. There were a lot of small soybeans harvested from this site. All varieties harvested well and the test was uniform with no

weed problems. With crop development lagging behind all year because of cool conditions, it was disappointing to get hit by the early frost.

Howard—This site was planted the latest of all these locations, on May 27. We then had a large rain event in June. Part of this test was damaged from standing water, resulting in the loss of one replication from this test. The undamaged parts of the test produced good yields averaging 62.9 bu. per acre. The soybeans were clean and we had good harvest conditions. Soybeans made maturity before being nipped by a little frost on Sept. 14.

1.6-2.3 Maturity (Group									Top 2	0 of 72	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Cavour	Colton	Flandreau	Howard‡
Titan Pro	TP-18R24	RR2Y	1.8	R	CCB	60.2	10.6	3	542	53.2	66.4	51.3	69.7
NK Brand	S17-B3 §	RR2Y	1.7	R	CCB	59.8	10.8	5	538	52.0	64.8	48.9	73.3
Pfister	19R24	RR2Y	1.9	R	CCB	59.6	10.4	4	536	55.4	70.3	43.7	68.9
Latham	L1785R2	RR2Y	1.7	R	CCB	59.3	10.7	4	534	55.0	68.5	43.9	69.8
REA	R2115	RR2Y	2.1	R	ACi	59.2	10.6	4	533	55.9	71.0	48.4	61.6
REA	82G14	RR2Y	2.2	R	ACi	59.2	10.8	6	533	54.4	67.5	48.2	66.7
Dyna-Gro	SX14819R	RR2Y	1.9	R	CMBV	59.1	10.4	3	532	54.1	62.8	49.9	69.7
REA	R1815	RR2Y	1.8	R	ACi	58.8	10.6	4	529	54.0	67.1	47.7	66.3
Dyna-Gro	S18RY25	RR2Y	1.8	R	CMBV	58.8	10.6	6	529	49.5	67.9	44.2	73.6
Wensman	W 3214NR2	RR2Y	2.1	R	AC,PV	58.3	10.5	4	525	53.4	67.1	44.6	68.2
REA	1901	RR2Y	1.9	MR	ACi	58.2	10.5	4	524	50.4	64.7	50.0	67.7
Prairie Brand	PB-1947R2	RR2Y	1.9	R	CMBV	58.1	10.4	3	523	53.9	55.3	51.4	71.9
Latham	L2084R2	RR2Y	2.0	R	CCB	58.1	10.8	4	523	54.4	59.1	47.2	71.7
Prairie Brand	PB-2230R2	RR2Y	2.2	R	CMBV	58.1	10.8	4	523	53.0	66.0	45.1	68.4
Pfister	17R28	RR2Y	1.7	R	CCB	57.9	10.7	5	521	53.0	68.4	43.7	66.6
Renk	RS213NR2	RR2Y	2.1	R	CMB	57.8	10.8	4	520	52.1	72.1	44.7	62.3
Wensman	W 3228NR2	RR2Y	2.2	R	AC,PV	57.7	10.5	7	519	53.0	64.0	47.8	66.1
Latham	L1858R2	RR2Y	1.8	R	SS+	57.6	10.7	4	518	53.9	60.5	49.8	66.2
Hefty	H17R5	RR2Y	1.7	MR	DST	57.5	10.7	4	518	51.3	66.7	45.0	67.1
Wensman	W 3195NR2	RR2Y	1.9	R	AC,PV	57.4	10.6	4	517	52.1	69.2	47.4	60.8
Site Averages =						55.7	10.6	4	501	51.1	62.9	45.8	62.9
LSD (0.10) =						4.2	0.5	2		4.6	6.7	4.8	8.7

FIRST South Dakota Southeast Soybean Results

Site Information							
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Beresford	silty clay loam	conventional	30	5/29	123.3	none	4.25
Chancellor	silty clay loam	conventional	30	5/29	119.8	none	3.03
Ethan	loam	no-till	30	5/29	113.7	none	4.03
Salem	clay loam	no-till	30	5/28	106.7	none	4.01

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Beresford— Total June rainfall was 10.69," which is 6.33" above the 30-year average here. This site missed the first frost on Sept. 14. As a result, this soybean crop was slow to mature this year, delaying harvest. The soybeans were up to the middle of the thigh in height and had fully matured at harvest. Other than some volunteer corn plants, the test was clean at harvest. One replication was removed because of unexplained soil-related yield variations.

Chancellor—Craig Hoogestraat, father of FIRST farmer member Brock Hoogestraat, applied preemergence herbicide to the field surrounding this site with his

planter, so the test did not receive this treatment. Craig sprayed Flexstar to kill the waterhemp. Some larger waterhemp survived, but we weeded those by hand. The test was clean at harvest and looked nice, although the early-season weed pressure was evident in some plots at harvest. Despite a couple of frosts this fall, some of the later varieties still had green stems.

Ethan—FIRST farmer member Lewis Bainbridge has been happy with soybean yields this year; some fields averaged over 50 bu. per acre, which is excellent for this area of the state. Some pods were aborted in August as a dry spell lingered from July into August.

Mark Tollefson, FIRST Manager

Soybean Stats:

Yield Range: 51.2-63.0 Yield Average: 57.9 Top \$ Per Acre: \$567.00

Some water damage on the edge of the test resulted in the loss of one replication. The test was very clean and all maturities were dry at harvest.

Salem—Kurt Stiefvater, FIRST farmer member, recorded 4.4" of rain in August and has had 17.6" total through Sept. 4, which is 5.4" less than in 2013. Soybean development lagged all year, and some full-season varieties were hit by frost before they fully matured. The plants were up to the middle of the thigh in height at harvest and very clean. We had a few flat and wet pods in our grain samples.

2.1-2.8 Maturity G	roup									Top 2	0 of 81	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Beresford‡	Chancellor	Ethan‡	Salem
Latham	L2645R2	RR2Y	2.6	S	CCB	63.0	12.6	4	567	56.6	68.7	65.4	61.2
Titan Pro	TP-23R04	RR2Y	2.3	R	CCB	62.3	11.1	4	561	58.0	72.4	59.5	59.2
Wensman	W 3214NR2	RR2Y	2.1	R	AC,PV	61.8	11.3	5	556	57.0	69.1	68.3	52.9
Titan Pro	TP-21R63	RR2Y	2.1	R	CCB	61.7	11.2	4	555	57.5	63.6	65.4	60.1
Dyna-Gro	S22RY64	RR2Y	2.2	MR	CMBV	61.3	11.5	4	552	55.0	63.8	72.2	54.2
Stine	24RE03 §	RR2Y	2.4	MR	None	61.0	11.8	4	549	53.6	69.8	64.5	56.2
Titan Pro	25M22	RR2Y	2.5	R	CCB	61.0	12.1	6	549	58.2	69.1	58.9	57.9
Latham	L2884R2	RR2Y	2.8	R	CCB	61.0	14.1	4	548	55.5	68.2	60.3	59.9
NK Brand	S24-K2 §	RR2Y	2.4	S	CMBV	60.9	11.6	5	548	62.5	66.1	57.5	57.4
Latham	L2128R2	RR2Y	2.1	R	CCB	60.6	11.3	3	545	54.0	60.3	66.8	61.3
Hefty	H28R4	RR2Y	2.8	MR	DST	60.6	13.8	4	544	58.3	63.8	61.6	58.5
Federal	F224NRR2Y	RR2Y	2.2	R	CCB	60.5	10.9	4	545	54.8	62.2	63.6	61.5
Hefty	H28R5	RR2Y	2.8	MR	DST	60.5	13.7	5	544	54.8	67.0	61.0	59.2
Dairyland	DST26-005/R2Y	RR2Y	2.6	MR	CMB	60.2	12.6	4	542	61.1	66.5	52.0	61.1
Federal	F230RR2Y	RR2Y	2.3	S	CMB	60.1	11.6	4	541	56.2	70.3	58.9	54.9
Hefty	H24R5	RR2Y	2.4	MR	DST	59.9	13.2	4	539	49.5	65.5	65.5	59.1
Wensman	W 3254NR2	RR2Y	2.5	R	AC,PV	59.9	11.6	5	539	52.0	68.1	60.5	59.0
Asgrow	AG2433 §	RR2Y	2.4	MR	ACi	59.8	12.1	5	538	52.5	70.3	55.2	61.1
Asgrow	AG2733 §	RR2Y	2.7	MR	ACi	59.7	12.9	4	537	52.5	66.1	63.6	56.6
SOI	2430RR2Y	RR2Y	2.4	S	None	59.7	12.0	5	537	59.4	65.2	59.4	54.8
Site Averages =						57.9	12.0	5	521	52.3	64.1	58.3	56.9
LSD (0.10) =						4.4	1.2	2		7.1	6.9	8.0	6.2

Results in **bold** are significantly above test average. $\ddagger = 2$ replications

FIRST Minnesota Central Soybean Results

Site information							
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Clinton	silty clay loam	conventional	30	5/16	133.9	none	5.00
Glencoe	clay loam	conventional	30	5/24	133.2	none	2.58
Litchfield	clay loam	conventional	30	5/29	134.5	none	4.45
Willmar*	clay loam	conventional	30	5/29	133.7	medium	2.00

Rainfall obtained on-site (*denoted) or estimated from www.weatherplot.com

Mark Querna, FIRST Manager

Soybean Stats:

Yield Range: 56.5-69.9 Yield Average: 64.9 Top \$ Per Acre: \$629.00

Soybean Field Notes: Minnesota Central

Clinton—The soil at this location had a full profile of moisture at planting, which took place on May 16. Late May and June were quite wet, the latter half of July was dry and August saw 5" of rain. Plants were healthy at harvest with heights a bit shorter than normal. Bean size contributed to the yield. FIRST farmer member Doug Nelson did not spray for aphids. The field around the test averaged about 55 bu. per acre.

Glencoe—This site experienced one of the wettest springs that FIRST farmer member Gary Krcil has seen in his farming career. As I pulled in to plant this site on May

24, I could not believe the ponding I saw everywhere. The site is pattern-tiled on sloping ground, so it withstood 8" of rain in May, 9" in June, 2.6" in July and 2.6" in August. These soybeans were astounding at harvest, with large seeded beans. Because of the extremely wet weather, Krcil Farms did not plant 30% of their acres this year.

Litchfield— One corner of this test was removed, as it was more variable with lower yields because of wet spring soils. Callisto herbicide drift from an adjacent cornfield had minimal yield impact in spite of visual damage to the bean plants. Frost on Sept. 12

lowered the top end yield of some varieties here. In spite of multiple stresses, this site turned out quite well. The fertility program here, which includes turkey manure on all fields, may have contributed greatly to the yield resilience at this site.

Willmar—This site was planted May 19 and it is a good thing it was planted on a south-facing slope, as that prevented ponding issues with the 12" of rain that came in June. The yields in this location were better on the higher elevations. Asana was sprayed for aphid control. Some SCN pressure was present, but the soybeans looked very healthy at harvest.

1.3-2.0 Maturity 6	Group									Top 2	0 of 72	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Clinton	Glencoe	Litchfield	Willmar
Latham	L1858R2	RR2Y	1.8	R	SS+	69.9	10.4	0	629	68.7	82.9	62.6	65.2
Prairie Brand	PB-1947R2	RR2Y	1.9	R	CMBV	69.9	10.7	0	629	72.2	77.4	67.7	62.2
Channel	1808R2	RR2Y	1.8	R	ACi	69.6	10.6	0	626	68.2	74.7	70.8	64.6
Wensman	W 3160NR2	RR2Y	1.6	R	AC,PV	68.8	10.0	0	619	68.0	76.2	69.7	61.1
Gold Country	1814	RR2Y	1.8	MR	ACi	68.6	10.5	0	617	68.8	73.5	66.4	65.6
NK Brand	S20-T6 §	RR2Y	2.0	MR	CCB	68.4	10.4	0	616	69.3	71.6	70.1	62.4
NorthStar	NS 1916NR2	RR2Y	1.9	R	CCB	68.2	10.1	0	614	65.7	78.7	68.2	60.2
Stine	20RD20 §	RR2Y	2.0	R	None	68.2	12.2	0	614	72.0	75.6	63.6	61.6
Latham	L1968R2	RR2Y	1.9	R	CCB	67.9	10.7	0	611	68.5	71.1	66.0	66.0
Latham	L2084R2	RR2Y	2.0	R	CCB	67.5	11.8	0	608	66.9	72.8	65.0	65.3
Dyna-Gro	S14RY95	RR2Y	1.4	R	CMBV	67.3	9.9	0	606	69.1	72.1	66.7	61.1
Asgrow	AG1431 §	RR2Y	1.4	R	ACi	67.1	10.1	0	604	63.8	71.3	69.9	63.2
Hefty	H20R5	RR2Y	2.0	MR	DST	67.0	11.6	0	603	69.7	71.0	64.2	63.0
Hefty	H15R5	RR2Y	1.5	MR	DST	66.9	10.0	0	602	67.3	73.7	66.6	59.8
Gold Country	1943	RR2Y	1.9	MR	ACi	66.9	10.1	0	602	68.4	69.8	66.4	62.9
Latham	L1985R2	RR2Y	1.9	R	CCB	66.9	10.2	0	602	66.2	72.1	62.3	67.0
Prairie Brand	PB-1956R2	RR2Y	1.9	R	CMBV	66.9	10.8	0	602	70.0	73.0	64.2	60.5
LG Seeds	C1370R2	RR2Y	1.3	R	AC,PV	66.8	9.9	0	601	67.1	70.2	67.4	62.3
Wensman	W 3200NR2	RR2Y	2.0	R	AC,PV	66.8	11.5	0	601	66.6	70.4	67.7	62.6
Wensman	W 3158NR2	RR2Y	1.5	R	AC,PV	66.7	9.7	0	600	67.9	73.6	66.5	58.8
Site Averages =						64.9	10.5	0	584	65.6	69.4	62.7	61.6
LSD (0.10) =						3.7	0.6	ns		5.1	5.5	5.8	5.4

BETTER YIELDS, BETTER CONTROL AND BETTER SAVINGS.

\$14/ACRE BACK

When you buy Liberty® + Autumn™ Super + qualifying FMC residual with your LibertyLink® soybean purchase

PURCHASE LIBERTYLINK® SOYBEAN SEED BUY LIBERTY® + AUTUMN™ SUPER + QUALIFYING FMC RESIDUAL EARN REBATES

The LinkUp™ program is back with savings for LibertyLink® growers. Get rebates on the strongest weed control system with LibertyLink varieties and Liberty® herbicide.

PRODUCT	MATCH RATE	INCENTIVE
Liberty®	29.0 oz./acre	
Autumn [™] Super	0.5 oz./acre	\$3.00/acre
Authority® Maxx	6.4 oz./acre	\$3.00/acre
Authority® Assist	8.0 oz./acre	\$3.00/acre
Authority® First	5.0 oz./acre	\$3.00/acre
Authority® MTZ DF	14.0 oz./acre	\$3.00/acre
Authority® XL	6.4 oz./acre	\$3.00/acre
Anthem®	6.0 oz./acre	\$2.00/acre

For more information, contact your retailer or Bayer CropScience representative.

Bayer CropScience reserves the right to modify or withdraw this program or any portion thereof without prior notice. Bayer CropScience LP, 2 TW Alexander Drive, Research Triangle Park, NC 27709. Always read and follow label instructions. Bayer (reg'd), the Bayer Cross (reg'd), Autumn,™ Liberty,® LibertyLink,® the LibertyLink logo (reg'd), and LinkUp™ are trademarks of Bayer. Liberty is not registered for use in all states. FMC is a trademark of FMC Corporation. Anthem and Authority are registered trademarks of FMC Corporation. For additional product information, call toll-free 1-866-99-BAYER (1-866-992-2937) or visit our website at www.BayerCropScience.us.

Soybean Field Notes: Minnesota South Central

Bird Island—This site demonstrates the fact that sovbeans do not like wet feet. FIRST farmer member, Doug Toreen, states that he received 12" of rain in June and very little the rest of the growing season. Adding insult to injury there was heavy SCN pressure on this test site, as well as broadleaf weed pressure. The result of these combined stresses was a very low and inconsistent yield. The average from the early-season test was only 34 bu. per acre and was followed by a full-season test average of only 26.7 bu. per acre. Use these results with caution however as a nearby field that was more intensely pattern tiled averaged a respectable 54 bu, per acre.

Madison Lake—This site was wet from early spring through the middle of July. Two attempts were made by a custom spray service to apply post herbicides to this site. Both of these attempts proved to be unsuccessful. Resulting weed escapes severely impacted the vield potential of this site. Several individual plots also showed severe stunting and low final stands due to excess moisture all season. These poor, inconsistent results were rejected. FIRST farmer member, Mike Krenik, stated that most of his soybean acres showed bu. per acre in the low 50s.

Nicollet—FIRST farmer members, Dale and Wayne Bjorklund, had a beautiful site at harvest. The Bjorklund's harvested the field surrounding the site early, so I began harvesting the test on Oct. 10.

Grain moistures in the full-season test were way too high to continue at 17-22%, so I did not harvest the final two replications at this site until Oct. 17. The early-season test showed more uniformity throughout, while the full-season test showed more variability in population and grain moisture. A killing frost on Sept.13 caused a premature end to the later maturing varieties. One full-season test replication was lost due to unacceptable variability. The average yield from the early-season test was 66.7 bu. per acre while the average from the full-season test was 62.3 bu, per acre.

Wabasso—Yields here were guite good, considering the wet conditions in the early growing season. SCN levels of 1,028 eggs/100 cc were detected at this location, and the pressure affected some plots. FIRST farmer member, Leon Plaetz, told me that 12" of rain fell at this site in June, and "then it just shut off." Plaetz noted how spotty yields have been across the fields. Soybean yields per acre have ranged from the upper 40s to mid-50s. Corn yields have changed from 210 bu. per acre to as low as 140 bu. per acre in the same field. Leon also stated that temperatures were too cool, comfortable for humans, but not warm enough to bring crops to maturity in a timely fashion. The final yield averages for the Wabasso tests averaged 57.3 bu. per acre in the early-season test with a slight increase to 62.1 bu. per acre in the full-season test.

Soybean Stats:

Yield Range: 42.9-60.8 Yield Average: 52.6 Top \$ Per Acre: \$547.00

A Gleaner K2 combine, equipped with electronic weight and moisture gathering equipment, harvests a soybean plot at the Wabasso, Minn. site.

Big corn yields at the Kasson, Minn. site proved to be too much for the front tire of this K2 plot combine.

FIRST Minnesota South Central Soybean Results

Site Information							
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Bird Island*	clay loam	conventional	30	5/16	128.6	medium	0.75
Madison Lake*	clay loam	conventional	30	6/5	79.6	none	3.51
Nicollet	clay loam	conventional	30	5/28	131.6	none	2.12
Wabasso* Rainfall obtained on-sit	clay loam e (*denoted) or	conventional estimated from www.wea	30 atherplot.o	5/21 com	129.3	medium	1.50

Mark Querna, FIRST Manager

Latham L18 NK Brand S15 Anderson 185 Channel 170 Channel 180 Gold Country 181 LG Seeds C18 Titan Pro TP- Latham E18 Prairie Brand PB- Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister	SEBR2	RR2Y 1	.8 .5 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	SCN B B B B B B B B B B B B B B B B B B B	SS+ CMBV None ACi ACi AC,PV CCB	(V/ng) plaix 60.8 58.5 58.2 58.1 57.1 56.9	11.6 11.9 11.7 11.4 11.7 11.6	COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	547 527 524 523 514	35.1 41.8 41.9 41.7	32.6 46.1 9.0 22.0	73.0 69.7 71.7 69.9	64.0 61.0
NK Brand	5-P1 § R 5R2Y R 50R2 R 108R2 R 4 R 899R2 R 118R24 R 1882R2 R 118R24 R 1282R2 R 11822R2 R	RR2Y 1	.5 .8 .7 .8 .8 .8 .8	MR R R R MR R R	None ACi ACi ACi AC,PV CCB	58.5 58.2 58.1 57.1 56.9	11.9 11.7 11.4 11.7	0 0 0	527 524 523 514	41.8 41.9 41.7	46.1 9.0 22.0	69.7 71.7 69.9	
Anderson 185 Channel 170 Channel 180 Gold Country 181 LG Seeds C18 Titan Pro TP- Latham E18 Prairie Brand PB- Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 15M Channel 15M Gold Country 141 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 198	5R2Y	RR2Y 1	.8 .7 .8 .8 .8 .8	R R R MR R R	None ACi ACi ACi AC,PV CCB	58.2 58.1 57.1 56.9	11.7 11.4 11.7	0 0	524 523 514	41.9 41.7	9.0 22.0	71.7 69.9	61.0
Channel 170 Channel 180 Gold Country 181 LG Seeds C18 Titan Pro TP- Latham E18 Prairie Brand PB- Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister	00R2 R 08R2 R 14 R 1999R2 R 18R24 R 882R2 R 11822R2 R 12R2N R 11 R 11 R	RR2Y 1	.7 .8 .8 .8 .8	R R MR R R	ACi ACi ACi AC,PV CCB	58.1 57.1 56.9	11.4 11.7	0	523 514	41.7	22.0	69.9	
Channel	98R2 R 14 R 999R2 R 18R24 R 882R2 R 1822R2 R 12R2N R 11 R 11 R	RR2Y 1	.8 .8 .8 .8	R MR R R	ACi ACi AC,PV CCB	57.1 56.9	11.7	0	514				
Gold Country	14 R 399R2 R 18R24 R 882R2 R 118822R2 R 12822R2 R 141 R 8R5	RR2Y 1	.8 .8 .8 .8	MR R R	ACi AC,PV CCB	56.9				38.2	47 5		62.7
LG Seeds C18 Titan Pro TP- Latham E18 Prairie Brand PB- Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R 19R	899R2 R 18R24 R 882R2 R 1822R2 R 12822R2 R 11 R 8R5 R	RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1	.8 .8 .8	R R R	AC,PV CCB		11.6					69.9	63.3
Titan Pro TP- Latham E18 Prairie Brand PB- Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R 19R	18R24 R 882R2 R 1882R2 R 21822R2 R 22R2N R 11 R	RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1	.8 .8 .8	R R	CCB			0	512	36.6	45.0	68.6	65.4
Latham E18 Prairie Brand PB-Viking Viking 152 Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB-Viking Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R	882R2	RR2Y 1 RR2Y 1 RR2Y 1 RR2Y 1	.8 .8	R		55.9	11.5	0	503	36.0	39.0	70.4	61.3
Prairie Brand PB-Viking Gold Country 174 Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB-Viking Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R	-1822R2 R 22R2N R 11 R BR5 R	RR2Y 1 RR2Y 1 RR2Y 1	.8			55.6	11.5	0	500	37.2	25.0	66.2	63.4
Viking	22R2N R #1 R BR5 R	RR2Y 1 RR2Y 1			SS+	55.0	11.7	0	495	36.4	24.3	66.6	62.0
Gold Country	11 R BR5 R	RR2Y 1	5	R	CMBV	54.8	11.3	0	493	34.3	19.0	68.0	62.1
Hefty H18 Titan Pro 15M Channel 150 Dyna-Gro S18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R	BR5 P			R	CMB	54.4	11.6	0	490	35.3	51.8	70.7	57.2
Titan Pro 15M Channel 150 Dyna-Gro \$18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister			.7	R	ACi	54.2	11.2	0	488	33.2	34.6	66.4	63.1
Channel 150 Dyna-Gro \$18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB-Viking Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R	MOO D		.8	MR	DST	54.2	11.4	0	488	30.9	26.0	67.8	63.9
Dyna-Gro \$18 LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB-Viking Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R			.5	R	CMBV	54.2	11.7	0	488	37.0	44.3	71.8	53.8
LG Seeds C15 Gold Country 141 Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R 19R			.5	R	ACi	54.1	11.3	0	487	37.2	26.8	67.5	57.6
Gold Country			.8	R	CMBV	54.1	11.8	0	487	32.7	20.9	68.8	60.8
Gold Country 151 Prairie Brand PB- Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R			.5	R	AC,PV	53.8	11.5	0	484	36.9	40.9	69.3	55.1
Prairie Brand PB-Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R			.4	R	ACi	53.2	11.8	0	479	37.1	42.0	67.7	54.7
Viking 200 Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister			.5	MR	ACi	52.6	11.2	0	473	36.3	39.5	66.8	54.8
Site Averages = LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R			.7	R	CMBV	52.6	11.5	0	473	31.4	30.3	69.4	57.0
LSD (0.10) = 1.9-2.2 Maturity Group Pfister 19R	OR2N CK P	RR2Y 2	.0	R	CMB	54.5	11.3	0	491	36.4	27.3	65.1	62.1
1.9-2.2 Maturity Group Pfister 19R						52.6	11.5	0	474	34.0	29.6	66.7	57.3
Pfister 19R						5.0	0.6	ns		6.4	12.0	5.6	6.2
				_							20 of 54 t		
Pioneer P22			.9	R	CCB	55.4	11.8	0	499	27.5	39.1	67.0	71.6
			.2	R	EE,G	55.2	12.9	0	497	34.7	44.4	63.5	67.4
Gold Country 211			.1	MR	ACi	54.8	12.6	0	493	31.5	44.3	68.5	64.4
			.1	R	CMBV	54.6	12.6	0	491	28.7	46.6	70.8	64.2
Hefty H20			2.0	MR	DST	54.6	12.7	0	491	34.5	39.2	66.4	62.9
			.2	R	CCB	54.1	12.4	0	487	31.9	45.8	66.1	64.2
			.0	MR	CCB	53.9	12.2	0	485	27.5	50.4	73.6	60.7
			.0	R	None	53.5	13.2	0	481	25.7	40.8	69.6	65.3
			.9	R	CMBV	53.3	11.9	0	480	23.6	41.1	69.4	67.0
			.9	R	ACI	53.1	12.8	0	478	31.5	42.6	66.6	61.3
			0 0	R	AC,PV	53.0 52.8	11.9 13.2	0	477 475	29.1	29.5	66.5	63.5
				R	CCB			0		22.9	50.0	69.3	66.3
			2 0	R R	CCB CMBV	52.7 52.6	12.9 11.7	0	474 473	33.9 27.7	37.7 45.7	62.5 67.9	61.6 62.1
			u !.1	n R	ACi	52.5	13.1	0	473	25.7	41.7	67.5	64.2
			1	MR	None	52.5 51.9	13.1	0	472 467	25.7 32.7	39.1	56.9	66.2
Gold Country 214			<u>∠</u> !.1	MR	ACi	51.9	14.0	0	466	26.9	44.6	65.5	63.4
			.9	IVIR R	None	51.9	14.0	0	465	26.9 28.9	21.6	64.1	62.0
			.9 !.1	R R	CCB	51.7	13.0	0	465	21.9	37.4	66.6	66.7
			0	n R	ACi	51.7	12.9	0	464	24.3	37.4 45.8	69.1	61.4
	2021 \$		0	R R	CMB	49.8	11.6	0	448	25.6	27.5	62.0	61.8
Site Averages =		11121 Z		n	CIVID	50.4	12.4	0	453	26.7	40.3	62.3	62.1
LSD (0.10) =						30.4	12.4	U	400		- 10.00	ULIJ	UZJ

LSD (0.10) = 6.0 1.4 ns 6.4 13.5 8.4 Results in **bold** are significantly above test average. $\ddagger = 2$ replications, full-season test; # = 1.4 rejected results, early- and full-season tests not included in summary

Soybean Field Notes: Minnesota South

Easton—The Easton site was planted on May 22. Despite being planted into good soil conditions and emerging fine, Mother Nature had her way and severely damaged the test with a hail event in the middle of June. FIRST farmer member Dru Martin left part of the test area intact all season so that we could see how it would have fared. It yielded only 13 bu. per acre. The remainder of this test was not harvested due to the hailstorm.

Jeffers—The Jeffers site was planted on May 21 and it was beautiful at harvest. FIRST farmer member Rick Quade stated that June was wet and July was a little dry. In June there was 6.3" of rain. The field surrounding the site averaged 57 bu. per acre, while this site averaged 65 bu. per acre in the early-season test and 63.6 bu. per acre in the full-season test. Lorsban and Sniper were applied to this site in an effort to control aphids in August. Plants were quite healthy at harvest. Large seed size once again contributed to the good yields here, as was the case with many other sites in Minnesota this year.

Kasson—The Kasson site was planted on May 28. The soil here was moist all through June due to the 9" of rain that fell. July provided only 2.15" of rain and August experienced over 6" of rain. The weather pattern for the season encouraged the development of sudden death syndrome, which impacted the yield of some varieties. A June soybean cyst

nematode sample revealed that 789 eggs/100 cc were present at that time. An early frost on Sept. 13 finished off the yield potential at this site. This field has pattern tile spaced at 40 ft., but our tests are downslope from the rest of the field, which averaged 60 bu. per acre. Excess surface water likely reduced test yields compared to the surrounding field. Plots in a portion of these tests, adjacent to a gravel road, were impacted by high soil pH. The final test averages here were only 44.6 bu. per acre in the early-season test and only slightly better in the full-season test at 47.8 bu. per acre.

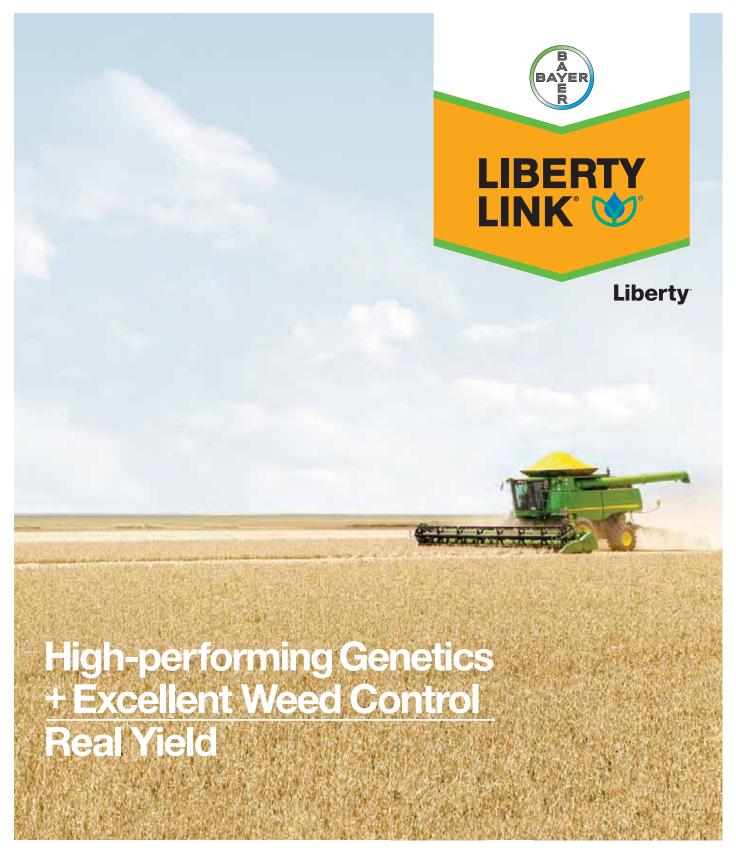
New Richland—This site was planted on May 22 and was located on higher ground, in a field that did not have great drainage. In spite of that, the site managed to weather almost 12" of rain in June without any drownouts. Plants on at this location were taller in stature than at most other sites this year. The seed size at harvest was also a huge plus, as they were quite large. Plant health here was good, which goes to prove that soybeans respond best in yield when weather conditions are most variable—in other words, when hot, cold, wet and dry conditions all occur in the same year, keeping pests at bay and preventing them from really attacking yields. No excess heat occurred in southern Minnesota over the entire growing season. FIRST farmer member Leon Schoenrock's tests averaged just over 62 bu. per acre.

Soybean Stats:Yield Range: 48.0-64.5 Yield Average: 57.6 Top \$ Per Acre: \$581.00

Soybean varieties show their true colors in the late afternoon sun at the Clinton, Minn. site.

While soybean plant height was shorter on average this year, seed size was much larger, boosting yields.

FIRST Minnesota South Soybean Results



Site Information							
Site	Soil Texture	Tillage	Row Width (in)	Planting Date	Stand	SCN Pop.	August Rain (in)
Easton	clay loam	conventional	30	5/22	n/a	n/a	4.60
Jeffers*	clay loam	conventional	30	5/21	130.1	none	3.70
Kasson	silt loam	conventional	30	5/28	130.2	medium	6.05
New Richland Rainfall obtained on-sit	clay loam e (*denoted) or	conventional estimated from www.wea	30 atherplot.o	5/22 com	133.3	none	5.95

Mark Querna, FIRST Manager

1.6-2.0 Maturity	Group									Тор	20 of 45	tested	
Company/ Brand	Product/ Brand	Technology	Maturity	SCN Resistance	Seed Treatment	Yield (Bu/A)	Moisture (%)	Lodging (%)	Gross Income (\$/A)	Easton	Jeffers	Kasson	
NK Brand	S17-B3 §	RR2Y	1.7	R	CCB	64.5	12.7	0	581		72.7	51.9	68
Prairie Brand	PB-1956R2	RR2Y	1.9	R	CMBV	63.3	12.7	0	570		70.0	52.5	67
Channel	1808R2	RR2Y	1.8	R	ACi	62.0	12.4	0	558		69.0	53.3	63
Gold Country	1814	RR2Y	1.8	MR	ACi	61.6	12.5	0	554		68.2	50.4	6
NK Brand	S19-Z9 §	RR2Y	1.9	R	CCB	61.6	13.0	0	554		65.5	50.7	6
Prairie Brand	PB-1947R2	RR2Y	1.9	R	CMBV	61.4	12.1	0	553		68.2	49.8	6
Dairyland	DSR-1990/R2Y	RR2Y	1.9	R	CMB	61.2	12.5	0	551	= -	65.4	52.5	6
_atham	L1968R2	RR2Y	1.9	R	CCB	61.1	12.5	0	550	je Pi	64.4	58.2	6
_atham	L1858R2	RR2Y	1.8	R	SS+	61.0	12.2	0	549	ere.	68.5	50.1	6
_G Seeds	C1899R2	RR2Y	1.8	R	AC,PV	60.9	12.5	0	548	fest lost to severe hail	69.2	45.2	6
Vensman	W 3195NR2	RR2Y	1.9	R	AC,PV	60.5	12.5	0	545	<u>ء</u>	68.5	48.3	6
Renk	RS195NR2 GC	RR2Y	1.9	R	None	60.4	12.1	0	544	ost	65.1	49.1	6
Titan Pro	TP-18R24	RR2Y	1.8	R	CCB	60.3	12.4	0	543	St	67.8	46.8	6
Pfister	19R24	RR2Y	1.9	R	CCB	60.1	12.6	0	541	<u>19</u>	65.5	48.2	6
/iking	1909R2N	RR2Y	1.9	R	None	59.9	12.7	0	539	_	65.0	52.2	6
lefty	H18R5	RR2Y	1.8	MR	DST	59.8	12.3	0	538		68.1	50.7	6
Anderson	185R2Y	RR2Y	1.8	R	None	58.6	12.4	0	527	-	67.1	51.9	5
Channel	1700R2	RR2Y	1.7	R	ACi	58.1	11.9	0	523		65.9	44.9	6
Renze	18R85R2cn	RR2Y	1.8	R	CMB	58.0	12.6	0	522	-	67.5	42.2	6
.atham	L1785R2	RR2Y	1.7	R	CCB	57.6	12.4	0	518		65.5	45.9	6
/ikina	2000R2N CK	RR2Y	2.0	R	CMB	57.7	12.1	0	519		63.8	40.4	6
Site Averages =						57.3	12.4	0	516		65.0	44.6	6
SD (0.10) =						4.9	0.2	0			4.0	8.3	
2.1-2.3 Maturity	Group									Top	20 of 54	tested	
Gold Country	2114	RR2Y	2.1	MR	ACi	64.5	12.0	0	581		65.6	60.1	6
)yna-Gro	S20RY45	RR2Y	2.0	R	CMBV	62.8	12.2	0	565		67.3	55.4	6
Channel	2108R2	RR2Y	2.1	R	ACi	62.6	11.8	0	563		64.6	57.0	6
Renk	RS213NR2	RR2Y	2.1	R	CMB	62.5	11.9	0	563		67.6	55.0	6
rairie Brand	PB-2188R2	RR2Y	2.1	R	CMBV	61.8	11.9	0	556	_	62.8	53.2	6
itan Pro	TP-20R44	RR2Y	2.0	R	CCB	61.8	12.0	0	556		61.8	56.9	6
IK Brand	S20-T6 §	RR2Y	2.0	MR	CCB	61.4	11.6	0	553	- = -	68.4	50.1	6
IK Brand	S22-S1 §	RR2Y	2.2	R	CCB	61.1	11.9	0	550	β	66.6	52.5	6
Stine	20RD20 §	RR2Y	2.0	R	None	61.1	12.3	0	550	Fest lost to severe hail	64.7	54.4	6
.atham	L2128R2	RR2Y	2.1	R	CCB	60.9	11.8	0	548	se/	65.8	52.8	6
.G Seeds	C2020R2	RR2Y	2.0	R	AC,PV	60.4	11.9	0	544	<u>ء</u>	65.5	54.6	6
.atham	L2084R2	RR2Y	2.0	R	ССВ	60.2	12.2	0	542	ost	63.8	50.2	6
Prairie Brand	PB-2230R2	RR2Y	2.2	R	CMBV	60.1	11.7	0	541	St l	63.2	50.4	6
Anderson	205R2Y	RR2Y	2.0	R	None	60.0	10.8	0	540	<u>1</u>	67.1	50.3	6
Advantage	ADV2014CR2	RR2Y	2.0	MR	None	59.7	12.0	0	537	_	61.4	52.6	6
Pfister	20R23	RR2Y	2.0	R	CCB	59.6	12.2	0	536		61.0	55.5	6
Croplan	R2C2263 GC	RR2Y	2.2	R	CMBV	59.3	11.9	0	534	_	64.3	49.7	6
Hefty	H20Y12	RR2Y	2.0	MR	DST	59.1	11.3	0	532		63.5	47.2	6
Pfister	22R20	RR2Y	2.2	R	CCB	59.1	11.5	0	532	_	68.3	47.6	6
Hefty	H20R5	RR2Y	2.0	MR	DST	59.1	11.9	0	532		66.3	45.1	6
/iking	2000R2N CK	RR2Y	2.0	R	CMB	58.9	11.4	0	530		60.8	47.1	6
Site Averages =						58.0	11.9	Ŏ	522		63.6	47.8	6

In the real world, weeds interfere with high yields. The good news is we've got that covered with high-performing genetics coupled with better weed control than Roundup® on tough-to-control weeds for high yields that deliver.

See the real yield story at BayerCropScience.us.

